학술논문

Range‐separated density functional theory using multiresolution analysis and quantum computing.
Document Type
Article
Source
Journal of Computational Chemistry. May2024, p1. 14p. 8 Illustrations.
Subject
Language
ISSN
0192-8651
Abstract
Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range‐separated density functional theory (RS‐DFT). The use of RS‐DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis‐set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy. [ABSTRACT FROM AUTHOR]