학술논문

Post-Control Surveillance of Triatoma infestans and Triatoma sordida with Chemically-Baited Sticky Traps.
Document Type
Article
Source
PLoS Neglected Tropical Diseases. 9/13/2012, Vol. 6 Issue 9, p1-10. 10p. 2 Color Photographs, 4 Charts, 2 Graphs.
Subject
*TRIATOMA
*CHAGAS' disease
*TICK infestations
*DISEASE vectors
*INFECTIOUS disease transmission
*VECTOR control
Language
ISSN
1935-2727
Abstract
Background: Chagas disease prevention critically depends on keeping houses free of triatomine vectors. Insecticide spraying is very effective, but re-infestation of treated dwellings is commonplace. Early detection-elimination of re-infestation foci is key to long-term control; however, all available vector-detection methods have low sensitivity. Chemically-baited traps are widely used in vector and pest control-surveillance systems; here, we test this approach for Triatoma spp. detection under field conditions in the Gran Chaco. Methodology/Principal Findings: Using a repeated-sampling approach and logistic models that explicitly take detection failures into account, we simultaneously estimate vector occurrence and detection probabilities. We then model detection probabilities (conditioned on vector occurrence) as a function of trapping system to measure the effect of chemical baits. We find a positive effect of baits after three (odds ratio [OR] 5.10; 95% confidence interval [CI95] 2.59–10.04) and six months (OR 2.20, CI95 1.04–4.65). Detection probabilities are estimated at p≈0.40–0.50 for baited and at just p≈0.15 for control traps. Bait effect is very strong on T. infestans (three-month assessment: OR 12.30, CI95 4.44–34.10; p≈0.64), whereas T. sordida is captured with similar frequency in baited and unbaited traps. Conclusions/Significance: Chemically-baited traps hold promise for T. infestans surveillance; the sensitivity of the system at detecting small re-infestation foci rises from 12.5% to 63.6% when traps are baited with semiochemicals. Accounting for imperfect detection, infestation is estimated at 26% (CI95 16–40) after three and 20% (CI95 11–34) after six months. In the same assessments, traps detected infestation in 14% and 8.5% of dwellings, whereas timed manual searches (the standard approach) did so in just 1.4% of dwellings only in the first survey. Since infestation rates are the main indicator used for decision-making in control programs, the approach we present may help improve T. infestans surveillance and control program management. Author Summary: Triatoma infestans is the main vector of Chagas disease in southern South America. Dwelling-infesting populations are controlled through insecticide-spraying campaigns; however, dwellings are often re-infested when insecticide effects wane, and this leads to the re-establishment of disease transmission. Detecting and eliminating re-infestation foci is therefore crucial to prevent new cases. Unfortunately, available vector detection methods all have low sensitivity. Here, we show that simple sticky traps baited with widely available chemicals are significantly more sensitive than either unbaited traps or active manual searches by trained staff — the standard method used in control programs. Increased trap sensitivity (about 500% higher), together with an analytical approach that takes detection failures into account, allows us to estimate dwelling infestation rates at about 20–26%; in contrast, just 0–1.4% of dwellings were identified as infested by manual searches. This large difference highlights the importance of enhancing surveillance systems, and reveals how crude infestation indices may mislead decision-makers. We conclude that chemically baited sticky traps can help improve T. infestans surveillance systems and thus strengthen vector control program management. [ABSTRACT FROM AUTHOR]