학술논문

Inhalative as well as Intravenous Administration of H 2 S Provides Neuroprotection after Ischemia and Reperfusion Injury in the Rats' Retina.
Document Type
Article
Source
International Journal of Molecular Sciences. May2022, Vol. 23 Issue 10, p5519-5519. 21p.
Subject
*REPERFUSION injury
*HEAT shock proteins
*INTRAVENOUS therapy
*RETINAL ganglion cells
*VASCULAR endothelial growth factors
*RETINA
*PERIMETRY
Language
ISSN
1661-6596
Abstract
Background: Neuronal ischemia-reperfusion injury (IRI), such as it can occur in glaucoma or strokes, is associated with neuronal cell death and irreversible loss of function of the affected tissue. Hydrogen sulfide (H2S) is considered a potentially neuroprotective substance, but the most effective route of application and the underlying mechanism remain to be determined. Methods: Ischemia-reperfusion injury was induced in rats by a temporary increase in intraocular pressure (1 h). H2S was then applied by inhalation (80 ppm at 0, 1.5, and 3 h after reperfusion) or by intravenous administration of the slow-releasing H2S donor GYY 4137. After 24 h, the retinas were harvested for Western blotting, qPCR, and immunohistochemical staining. Retinal ganglion cell survival was evaluated 7 days after ischemia. Results: Both inhalative and intravenously delivered H2S reduced retinal ganglion cell death with a better result from inhalative application. H2S inhalation for 1.5 h, as well as GYY 4137 treatment, increased p38 phosphorylation. Both forms of application enhanced the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and inhalation showed a significant increase at all three time points. H2S treatment also reduced apoptotic and inflammatory markers, such as caspase-3, intracellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS). The protective effect of H2S was partly abolished by the ERK1/2 inhibitor PD98059. Inhalative H2S also reduced the heat shock response including heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) and the expression of radical scavengers such as superoxide dismutases (SOD1, SOD2) and catalase. Conclusion: Hydrogen sulfide acts, at least in part, via the mitogen-activated protein kinase (MAPK) ERK1/2 to reduce apoptosis and inflammation. Both inhalative H2S and intravenous GYY 4137 administrations can improve neuronal cell survival. [ABSTRACT FROM AUTHOR]