소장자료
LDR | 02565cam a2200000 a | ||
001 | 0100442598▲ | ||
005 | 20200106152803▲ | ||
007 | ta ▲ | ||
008 | 180522s2020 maua b 001 0 eng c▲ | ||
020 | ▼a9780135116692 (pbk.)▲ | ||
020 | ▼a0135116694 (pbk.)▲ | ||
035 | ▼a(KERIS)REF000019163907▲ | ||
040 | ▼aYDX▼beng▼cYDX▼dBDX▼dOCLCQ▼dJRZ▼dABC▼dYDXIT▼dOCLCF▼d221016▲ | ||
082 | 0 | 4 | ▼a006.3/1▼223▲ |
090 | ▼a006.31▼bK93d▲ | ||
100 | 1 | ▼aKrohn, Jon.▲ | |
245 | 1 | 0 | ▼aDeep learning illustrated :▼ba visual, interactive guide to artificial intelligence /▼cJon Krohn, with Grant Beyleveld and Aglaé Bassens.▲ |
260 | ▼aBoston :▼bAddison-Wesley,▼c2020.▲ | ||
300 | ▼axxxviii, 368 p. :▼bill. ;▼c24 cm.▲ | ||
490 | 0 | ▼aAddison Wesley data & analytics series▲ | |
504 | ▼aIncludes bibliographical references and index.▲ | ||
505 | 0 | ▼aIntroducing deep learning. Biological and machine vision -- Human and machine language -- Machine art -- Game-playing machines -- Essential theory illustrated. The (Code) cart ahead of the (theory) horse -- Artificial neurons detecting hot dogs -- Artificial neural networks -- Training deep networks -- Improving deep networks -- Interactive applications of deep learning. Machine vision -- Natural language processing -- Generative adversarial networks -- Deep reinforcement learning -- You and AI. Moving forward with your own deep learning projects -- Aooendix A: Formal neural network notation -- Appendix B: Backpropagation -- Appendix C: PyTorch.▲ | |
520 | ▼aDeep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. "Deep learning illustrated" is uniquely intuitive and offers a complete introduction to the discipline's techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.▲ | ||
650 | 0 | ▼aMachine learning.▲ | |
650 | 0 | ▼aArtificial intelligence.▲ | |
650 | 0 | ▼aNatural language processing (Computer science)▲ | |
700 | 1 | ▼aBeyleveld, Grant.▲ | |
700 | 1 | ▼aBassens, Aglaé.▲ |

Deep learning illustrated :a visual, interactive guide to artificial intelligence
자료유형
국외단행본
서명/책임사항
Deep learning illustrated : a visual, interactive guide to artificial intelligence / Jon Krohn, with Grant Beyleveld and Aglaé Bassens.
발행사항
Boston : Addison-Wesley , 2020.
형태사항
xxxviii, 368 p. : ill. ; 24 cm.
서지주기
Includes bibliographical references and index.
내용주기
Introducing deep learning. Biological and machine vision -- Human and machine language -- Machine art -- Game-playing machines -- Essential theory illustrated. The (Code) cart ahead of the (theory) horse -- Artificial neurons detecting hot dogs -- Artificial neural networks -- Training deep networks -- Improving deep networks -- Interactive applications of deep learning. Machine vision -- Natural language processing -- Generative adversarial networks -- Deep reinforcement learning -- You and AI. Moving forward with your own deep learning projects -- Aooendix A: Formal neural network notation -- Appendix B: Backpropagation -- Appendix C: PyTorch.
요약주기
Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. "Deep learning illustrated" is uniquely intuitive and offers a complete introduction to the discipline's techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.
ISBN
9780135116692 (pbk.) 0135116694 (pbk.)
청구기호
006.31 K93d
소장정보
예도서예약
서서가에없는책 신고
보보존서고신청
캠캠퍼스대출
우우선정리신청
배자료배달신청
문문자발송
출청구기호출력
학소장학술지 원문서비스
등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 서비스 |
---|
북토크
자유롭게 책을 읽고
느낀점을 적어주세요
글쓰기
느낀점을 적어주세요
청구기호 브라우징
관련 인기대출 도서