학술논문

Relation-based Motion Prediction using Traffic Scene Graphs
Document Type
Conference
Source
2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) Intelligent Transportation Systems (ITSC), 2022 IEEE 25th International Conference on. :825-831 Oct, 2022
Subject
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineering Profession
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Semantics
Predictive models
Graph neural networks
Behavioral sciences
Trajectory
Data mining
Task analysis
Language
Abstract
Representing relevant information of a traffic scene and understanding its environment is crucial for the success of autonomous driving. Modeling the surrounding of an autonomous car using semantic relations, i.e., how different traffic participants relate in the context of traffic rule based behaviors, is hardly been considered in previous work. This stems from the fact that these relations are hard to extract from real-world traffic scenes. In this work, we model traffic scenes in a form of spatial semantic scene graphs for various different predictions about the traffic participants, e.g., acceleration and deceleration. Our learning and inference approach uses Graph Neural Networks (GNNs) and shows that incorporating explicit information about the spatial semantic relations between traffic participants improves the predicdtion results. Specifically, the acceleration prediction of traffic participants is improved by up to 12% compared to the baselines, which do not exploit this explicit information. Furthermore, by including additional information about previous scenes, we achieve 73% improvements.