학술논문
전자자료 공정이용 안내
우리 대학 도서관에서 구독·제공하는 모든 전자자료(데이터베이스, 전자저널, 전자책 등)는 국내외 저작권법과 출판사와의 라이선스 계약에 따라 엄격하게 보호를 받고 있습니다.
전자자료의 비정상적 이용은 출판사로부터의 경고, 서비스 차단, 손해배상 청구 등 학교 전체에 심각한 불이익을 초래할 수 있으므로, 아래의 공정이용 지침을 반드시 준수해 주시기 바랍니다.
공정이용 지침
- 전자자료는 개인의 학습·교육·연구 목적의 비영리적 사용에 한하여 이용할 수 있습니다.
- 합리적인 수준의 다운로드 및 출력만 허용됩니다. (일반적으로 동일 PC에서 동일 출판사의 논문을 1일 30건 이하 다운로드할 것을 권장하며, 출판사별 기준에 따라 다를 수 있습니다.)
- 출판사에서 제공한 논문의 URL을 수업 관련 웹사이트에 게재할 수 있으나, 출판사 원문 파일 자체를 복제·배포해서는 안 됩니다.
- 본인의 ID/PW를 타인에게 제공하지 말고, 도용되지 않도록 철저히 관리해 주시기 바랍니다.
불공정 이용 사례
- 전자적·기계적 수단(다운로딩 프로그램, 웹 크롤러, 로봇, 매크로, RPA 등)을 이용한 대량 다운로드
- 동일 컴퓨터 또는 동일 IP에서 단시간 내 다수의 원문을 집중적으로 다운로드하거나, 전권(whole issue) 다운로드
- 저장·출력한 자료를 타인에게 배포하거나 개인 블로그·웹하드 등에 업로드
- 상업적·영리적 목적으로 자료를 전송·복제·활용
- ID/PW를 타인에게 양도하거나 타인 계정을 도용하여 이용
- EndNote, Mendeley 등 서지관리 프로그램의 Find Full Text 기능을 이용한 대량 다운로드
- 출판사 콘텐츠를 생성형 AI 시스템에서 활용하는 행위(업로드, 개발, 학습, 프로그래밍, 개선 또는 강화 등)
위반 시 제재
- 출판사에 의한 해당 IP 또는 기관 전체 접속 차단
- 출판사 배상 요구 시 위반자 개인이 배상 책임 부담
'학술논문'
에서 검색결과 301건 | 목록
1~20
Academic Journal
Loaiza-Cano, Vanessa ; Pardo-Rodriguez, Daniel ; Vázquez, Cecilia A. ; Pastrana Restrepo, Manuel ; Burgos, Juan C. ; Avila, Juan S. ; Gallo, Facundo N. ; Dellarole, Mariano ; Cordo, Sandra M. ; García, Cybele C. ; Galeano, Elkin ; Zapata, Wildeman ; Ruiz-Saenz, Julian ; Martinez-Gutierrez, Marlen
In Biochemical and Biophysical Research Communications 15 August 2025 775
Academic Journal
Wbeimar Aguilar-Jimenez; Ana Lucia Rodriguez-Perea; Mateo Chvatal-Medina; Paula A. Velilla; Wildeman Zapata-Builes; Laura M. Monsalve-Escudero; Maria I. Zapata-Cardona; Jorge Humberto Tabares-Guevara; Daniel S. Rincón; Juan C. Hernandez; Yulied Tabares; Liliana Lopez-Carvajal; Maria T. Rugeles
Frontiers in Immunology, Vol 15 (2024)
Academic Journal
María M. Naranjo‐Covo; Daniel S. Rincón‐Tabares; Lizdany Flórez‐Álvarez; Juan C. Hernandez; Wildeman Zapata‐Builes
Immunity, Inflammation and Disease, Vol 13, Iss 2, Pp n/a-n/a (2025)
Academic Journal
Zapata, Wildeman; Serna-Arbeláez, Maria S.; Florez-Sampedro, Laura; Orozco, Lina P.; Ramírez, Katherin; Galeano, Elkin; Zapata Builes, Wildeman
Adv Virol
Advances in Virology, Vol 2021 (2021)
[1] S. G. Deeks, S. R. Lewin, and D. V. Havlir, “+e end of AIDS: HIV infection as a chronic disease,” ?e Lancet, vol. 382, no. 9903, pp. 1525–1533, 2013
[2] UNAIDS, Global HIV & AIDS Statistics-2020 Fact Sheet, UNAIDS, Geneva, Switzerland, unaids.org2020, 2020.
[3] S. B. Laskey and R. F. Siliciano, “A mechanistic theory to explain the efficacy of antiretroviral therapy,” Nature Reviews Microbiology, vol. 12, no. 11, pp. 772–780, 2014.
[4] T. B. Ng, B. Huang, W. P. Fong, and H. W. Yeung, “Antihuman immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors,” Life Sciences, vol. 61, no. 10, pp. 933–949, 1997.
[5] Panel on Antiretroviral Guidelines for Adults and Adolescents, Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV, Department of Health and Human Services, Washington, DC, USA, 2019.
[6] Organization WH, Guideline on when to Start Antiretroviral ?erapy and on Pre-exposure Prophylaxis for HIV, 78 pages, World Health Organization, Geneva, Switzerland, 2015.
[7] D. King, S. Tomkins, A. Waters et al., “Intracellular cytokines may model immunoregulation of abacavir hypersensitivity in HIV-infected subjects,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 1081–1087, 2005
[8] J. Stekler, J. Maenza, C. Stevens et al., “Abacavir hypersensitivity reaction in primary HIV infection,” Aids, vol. 20, no. 9, pp. 1269–1274, 2006.
[9] B. S. Peters and K. Conway, “+erapy for HIV,” Advances in Dental Research, vol. 23, no. 1, pp. 23–27, 2011.
[10] V. Montessori, N. Press, M. Harris, L. Akagi, and J. S. Montaner, “Adverse effects of antiretroviral therapy for HIV infection,” CMAJ: Canadian Medical Association Journal, vol. 170, no. 2, pp. 229–238, 2004.
[11] S. Esser, D. Helbig, U. Hillen, J. Dissemond, and S. Grabbe, “Side effects of HIV therapy,” JDDG, vol. 5, no. 9, pp. 745–754, 2007
[12] L. Menendez-Arias, “Targeting HIV: antiretroviral therapy ´ and development of drug resistance,” Trends in Pharmacological Sciences, vol. 23, no. 8, pp. 381–388, 2002.
[13] E. M. Gardner, W. J. Burman, J. F. Steiner, P. L. Anderson, and D. R. Bangsberg, “Antiretroviral medication adherence and the development of class-specific antiretroviral resistance,” AIDS, vol. 23, no. 9, pp. 1035–1046, 2009
[14] J. B. Nachega, V. C. Marconi, G. U. van Zyl et al., “HIV treatment adherence, drug resistance, virologic failure: evolving concepts,” Infectious Disorders Drug Targets, vol. 11, no. 2, pp. 167–174, 2011.
[15] P. Yeni, “Update on HAART in HIV,” Journal of Hepatology, vol. 44, 2006
[16] F. Nakagawa, A. Miners, C. J. Smith et al., “Projected lifetime healthcare costs associated with HIV infection,” PLoS One, vol. 10, no. 4, Article ID e0125018, 2015.
[17] N. E. +omford, D. A. Senthebane, A. Rowe et al., “Natural products for drug discovery in the 21st century: innovations for novel drug discovery,” International Journal of Molecular Sciences, vol. 19, no. 6, 2018.
[18] L. Palmisano and S. Vella, “A brief history of antiretroviral therapy of HIV infection: success and challenges,” Annali dell’Istituto Superiore di Sanita, vol. 47, no. 1, pp. 44–48, 2011.
[19] K. Vermani and S. Garg, “Herbal medicines for sexually transmitted diseases and AIDS,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 49–66, 2002.
[20] D. Chattopadhyay, M. C. Sarkar, T. Chatterjee et al., “Recent advancements for the evaluation of anti-viral activities of natural products,” New Biotechnology, vol. 25, no. 5, pp. 347–368, 2009.
[21] K. Yazaki, G.-i. Arimura, and T. Ohnishi, “Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles,” Plant and Cell Physiology, vol. 58, no. 10, pp. 1615–1621, 2017
[22] D. +oll, “Biosynthesis and biological functions of terpenoids in plants,” Biotechnology of Isoprenoids, vol. 148, pp. 63–106, 2015.
[23] J.-H. Yu, G.-C. Wang, Y.-S. Han, Y. Wu, M. A. Wainberg, and J.-M. Yue, “Limonoids with anti-HIV activity from Cipadessa cinerascens,” Journal of Natural Products, vol. 78, no. 6, pp. 1243–1252, 2015.
[24] M. Shahidul Alam, M. A. Quader, and M. A. Rashid, “HIVinhibitory diterpenoid from Anisomeles indica,” Fitoterapia, vol. 71, no. 5, pp. 574–576, 2000.
[25] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Terpenoids and their anti-HIV-1 activities from Excoecaria acerifolia,” Fitoterapia, vol. 91, pp. 224–230, 2013.
[26] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Anti-HIV-1 tigliane diterpenoids from Excoecaria acertiflia Didr,” Fitoterapia, vol. 95, pp. 34–41, 2014.[27] S.-F. Li, Y. Zhang, N. Huang et al., “Daphnane diterpenoids from the stems of Trigonostemon lii and their anti-HIV-1 activity,” Phytochemistry, vol. 93, pp. 216–221, 2013.
[28] Y.-Y. Cheng, H. Chen, H.-P. He et al., “Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum,” Phytochemistry, vol. 96, pp. 360–369, 2013.
[29] T. Fujioka, Y. Kashiwada, R. E. Kilkuskie et al., “Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids,” Journal of Natural Products, vol. 57, no. 2, pp. 243–247, 1994.
[30] T. Kanamoto, Y. Kashiwada, K. Kanbara et al., “Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 1225–1230, 2001.
[31] F. Li, R. Goila-Gaur, K. Salzwedel et al., “PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing,” Proceedings of the National Academy of Sciences, vol. 100, no. 23, pp. 13555–13560, 2003.
[32] Y. Zhao, Q. Gu, S. L. Morris-Natschke, C.-H. Chen, and K.-H. Lee, “Incorporation of privileged structures into bevirimat can improve activity against wild-type and bevirimat-resistant HIV-1,” Journal of Medicinal Chemistry, vol. 59, no. 19, pp. 9262–9268, 2016.
[33] F. Soler, C. Poujade, M. Evers et al., “Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry,” Journal of Medicinal Chemistry, vol. 39, no. 5, pp. 1069–1083, 1996.
[34] J. Tang, S. A. Jones, J. L. Jeffrey et al., “Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms,” Bioorganic & Medicinal Chemistry Letters, vol. 27, no. 12, pp. 2689–2694, 2017.
[35] H.-X. Xu, F.-Q. Zeng, M. Wan, and K.-Y. Sim, “Anti-HIV triterpene acids fromGeum japonicum,” Journal of Natural Products, vol. 59, no. 7, pp. 643–645, 1996.
[36] Y. Kashiwada, T. Nagao, A. Hashimoto et al., “Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid Derivatives1,” Journal of Natural Products, vol. 63, no. 12, pp. 1619–1622, 2000
[37] N. Kongkum, P. Tuchinda, M. Pohmakotr et al., “Cytotoxic, antitopoisomerase IIα, and anti-HIV-1 activities of triterpenoids isolated from leaves and twigs of Gardenia carinata,” Journal of Natural Products, vol. 76, no. 4, pp. 530–537, 2013.
[38] S. el-Mekkawy, M. R. Meselhy, N. Nakamura et al., “AntiHIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum,” Phytochemistry, vol. 49, no. 6, pp. 1651–1657, 1998.
[39] B.-S. Min, N. Nakamura, H. Miyashiro, K.-W. Bae, and M. Hattori, “Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 10, pp. 1607–1612, 1998
[40] T. Konoshima, I. Yasuda, Y. Kashiwada, L. M. Cosentino, and K.-H. Lee, “Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of gleditsia japonica and gymnocladus chinesis, and a structure-activity correlation,” Journal of Natural Products, vol. 58, no. 9, pp. 1372–1377, 1995.
[41] Y. Kashman, K. R. Gustafson, R. W. Fuller et al., “HIV inhibitory natural products. Part 7. +e calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum,” Journal of Medicinal Chemistry, vol. 35, no. 15, pp. 2735–2743, 1992.
[42] M. Huerta-Reyes, M. d. C. Basualdo, F. Abe, M. JimenezEstrada, C. Soler, and R. Reyes-Chilpa, “HIV-1 inhibitory compounds from Calophyllum brasiliense leaves,” Biological and Pharmaceutical Bulletin, vol. 27, no. 9, pp. 1471–1475, 2004
[43] A. D. Patil, A. J. Freyer, D. S. Eggleston et al., “+e inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn,” Journal of Medicinal Chemistry, vol. 36, no. 26, pp. 4131–4138, 1993.
[44] H. Dharmaratne, W. Wanigasekera, E. Mata-Greenwood, and J. Pezzuto, “Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated fromCalophyllum cordato-oblongum,” Planta Medica, vol. 64, no. 05, pp. 460-461, 1998.
[45] H. R. W. Dharmaratne, G. T. Tan, G. P. K. Marasinghe, and J. M. Pezzuto, “Inhibition of HIV-1 reverse transcriptase and HIV-1 replication by Calophyllum coumarins and xanthones,” Planta Medica, vol. 68, no. 1, pp. 86-87, 2002.
[46] E. Kudo, M. Taura, K. Matsuda et al., “Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 3, pp. 606–609, 2013.
[47] P. Zhou, Y. Takaishi, H. Duan et al., “Coumarins and bicoumarin from Ferula sumbul: anti-HIV activity and inhibition of cytokine release,” Phytochemistry, vol. 53, no. 6, pp. 689–697, 2000.
[48] N. Marquez, R. Sancho, L. M. Bedoya et al., “Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-kappaB pathway,” Antiviral Research, vol. 66, no. 2-3, pp. 137–145, 2005.
[49] Q. Wang, Z. Ding, J. Liu, and Y. Zheng, “Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus,” Antiviral Research, vol. 64, no. 3, pp. 189–194, 2004.
[50] D. C. Rowley, M. S. T. Hansen, D. Rhodes et al., “+alassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase,” Bioorganic & Medicinal Chemistry, vol. 10, no. 11, pp. 3619–3625, 2002
[51] N. Mahmood, C. Pizza, R. Aquino et al., “Inhibition of HIV infection by flavanoids,” Antiviral Research, vol. 22, no. 2-3, pp. 189–199, 1993.
[52] S. Li, T. Hattori, and E. N. Kodama, “Epigallocatechin gallate inhibits the HIV reverse transcription step,” Antiviral Chemistry and Chemotherapy, vol. 21, no. 6, pp. 239–243, 2011.
[53] K. Kitamura, M. Honda, H. Yoshizaki et al., “Baicalin, an inhibitor of HIV-1 production in vitro,” Antiviral Research, vol. 37, no. 2, pp. 131–140, 1998.
[54] B. Q. Li, T. Fu, Y. Dongyan, J. A. Mikovits, F. W. Ruscetti, and J. M. Wang, “Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry,” Biochemical and Biophysical Research Communications, vol. 276, no. 2, pp. 534–538, 2000.
[55] S. Pasetto, V. Pardi, and R. M. Murata, “Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model,” PLoS One, vol. 9, no. 12, Article ID e115323, 2014.
[56] P. Chaniad, C. Wattanapiromsakul, S. Pianwanit, and S. Tewtrakul, “Anti-HIV-1 integrase compounds fromDioscorea bulbiferaand molecular docking study,” Pharmaceutical Biology, vol. 54, no. 6, pp. 1077–1085, 2016
[57] J. T. Ortega, A. I. Suarez, M. L. Serrano, J. Baptista, F. H. Pujol, and H. R. Rangel, “+e role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro,” AIDS Research and ?erapy, vol. 14, no. 1, 57 pages, 2017.
[58] A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, “Inhibition of human immunodeficiency virus type-1 integrase by curcumin,” Biochemical Pharmacology, vol. 49, no. 8, pp. 1165–1170, 1995.
[59] A. Mazumder, N. Neamati, S. Sunder et al., “Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action,” Journal of Medicinal Chemistry, vol. 40, no. 19, pp. 3057– 3063, 1997.
[60] N. Kumari, A. A. Kulkarni, X. Lin et al., “Inhibition of HIV-1 by curcumin A, a novel curcumin analog,” Drug Design, Development and ?erapy, vol. 9, pp. 5051–5060, 2015.
[61] R. A. Reinke, D. J. Lee, B. R. McDougall et al., “L-chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro,” Virology, vol. 326, no. 2, pp. 203–219, 2004.
[62] Y.-J. Zou, H.-X. Wang, T.-B. Ng, C.-Y. Huang, and J.-X. Zhang, “Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides,” ?e Journal of Microbiology, vol. 50, no. 1, pp. 72–78, 2012.
[63] H. X. Wang and T. B. Ng, “A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” Biochemical and Biophysical Research Communications, vol. 322, no. 1, pp. 17–21, 2004.
[64] M. Li, G. Zhang, H. Wang, and T. Ng, “Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum,” Journal of Microbiology and Biotechnology, vol. 20, no. 7, pp. 1069–1076, 2010.
[65] H. X. Wang and T. B. Ng, “A laccase from the medicinal mushroom Ganoderma lucidum,” Applied Microbiology and Biotechnology, vol. 72, no. 3, pp. 508–513, 2006
[66] J. Sun, Q. J. Chen, Q. Q. Cao et al., “A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces,” Journal of Biomedicine & Biotechnology, vol. 2012, Article ID 736472, 12 pages, 2012.
[67] D. D. Hu, R. Y. Zhang, G. Q. Zhang, H. X. Wang, and T. B. Ng, “A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea,” Phytomedicine, vol. 18, no. 5, pp. 374–379, 2011
[68] H. X. Wang and T. B. Ng, “Purification of a novel lowmolecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum,” Biochemical and Biophysical Research Communications, vol. 315, no. 2, pp. 450–454, 2004.
[69] S. Zhao, C. B. Rong, C. Kong et al., “A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus,” BioMed Research International, vol. 2014, Article ID 417461, 8 pages, 2014.
[70] X. Wu, C. Huang, Q. Chen, H. Wang, and J. Zhang, “A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroomPleurotus cornucopiae,” Biomedical Chromatography, vol. 28, no. 4, pp. 548–553, 2014.
[71] J. H. Wong, T. B. Ng, Y. Jiang, F. Liu, S. C. Sze, and K. Y. Zhang, “Purification and characterization of a Laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae),” Protein and Peptide Letters, vol. 17, no. 8, pp. 1040–1047, 2010.
[72] G.-Q. Zhang, Y.-F. Wang, X.-Q. Zhang, T. B. Ng, and H.-X. Wang, “Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima,” Process Biochemistry, vol. 45, no. 5, pp. 627–633, 2010.
[73] L. Xu, H. Wang, and T. Ng, “A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus,” BioMed Research International, vol. 2012, Article ID 536725, 7 pages, 2012.
[74] J. Sun, H. Wang, and T. B. Ng, “Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom),” Indian Journal of Biochemistry & Biophysics, vol. 48, no. 2, pp. 88–94, 2011.
[75] H. X. Wang and T. B. Ng, “Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases,” Planta Medica, vol. 67, no. 7, pp. 669–672, 2001.
[76] J. Balzarini, D. Schols, J. Neyts, E. Van Damme, W. Peumans, and E. De Clercq, “Alpha-(1-3)-and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 3, pp. 410–416, 1991.
[77] J. Balzarini, J. Neyts, D. Schols et al., “+e mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro,” Antiviral Research, vol. 18, no. 2, pp. 191–207, 1992.
[78] R. D. Charan, M. H. G. Munro, B. R. O’Keefe et al., “Isolation and characterization ofMyrianthus holstiiLectin, a potent HIV-1 inhibitory protein from the PlantMyrianthus holstii1,” Journal of Natural Products, vol. 63, no. 8, pp. 1170–1174, 2000
[79] G. Ferir, D. Huskens, S. Noppen, L. M. I. Koharudin, ´ A. M. Gronenborn, and D. Schols, “Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family,” Journal of Antimicrobial Chemotherapy, vol. 69, no. 10, pp. 2746–2758, 2014.
[80] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2005.
[81] S. Zhao, Y. Zhao, S. Li et al., “A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica,” Glycoconjugate Journal, vol. 27, no. 2, pp. 259–265, 2010.
[82] Y. R. Li, Q. H. Liu, H. X. Wang, and T. B. Ng, “A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1780, no. 1, pp. 51–57, 2008.
[83] C. H. Han, Q. H. Liu, T. B. Ng, and H. X. Wang, “A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune,” Biochemical and Biophysical Research Communications, vol. 336, no. 1, pp. 252–257, 2005.
[84] G. Q. Zhang, J. Sun, H. X. Wang, and T. B. Ng, “A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa,” Acta Biochimica Polonica, vol. 56, no. 3, pp. 415–421, 2009.
[85] J. K. Zhao, H. X. Wang, and T. B. Ng, “Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella,” Toxicon, vol. 53, no. 3, pp. 360–366, 2009.
[86] S. Zheng, C. Li, T. B. Ng, and H. X. Wang, “A lectin with mitogenic activity from the edible wild mushroom Boletus edulis,” Process Biochemistry, vol. 42, no. 12, pp. 1620–1624, 2007.
[87] Y. Li, G. Zhang, T. B. Ng, and H. Wang, “A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” BioMed Research International, vol. 2010, Article ID 716515, 9 pages, 2010.
[88] H. Wang and T. B. Ng, “Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies,” Life Sciences, vol. 68, no. 18, pp. 2151–2158, 2001.
[89] S. K. Lam and T. B. Ng, “First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects,” Archives of Biochemistry and Biophysics, vol. 393, no. 2, pp. 271–280, 2001
[90] S. K. Lam and T. B. Ng, “Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 1071–1075, 2001.
[91] J. H. Wong, H. X. Wang, and T. B. Ng, “Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus,” Applied Microbiology and Biotechnology, vol. 81, no. 4, pp. 669–674, 2008
[92] Y.-M. Ng, Y. Yang, K.-H. Sze, X. Zhang, Y.-T. Zheng, and P.-C. Shaw, “Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica),” Journal of Structural Biology, vol. 174, no. 1, pp. 164–172, 2011.
[93] I. Kaur, M. Puri, Z. Ahmed, F. P. Blanchet, B. Mangeat, and V. Piguet, “Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina,” PLoS One, vol. 8, no. 9, Article ID e73780, 2013.
[94] F. Rajamohan, T. K. Venkatachalam, J. D. Irvin, and F. M. Uckun, “Pokeweed antiviral protein isoforms PAP-I, PAP-II, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1,” Biochemical and Biophysical Research Communications, vol. 260, no. 2, pp. 453–458, 1999.
[95] T. Ichiba, P. J. Scheuer, M. Kelly-borges, and F. Pierce, “+ree bromotyrosine derivatives, one terminating in an unprecedented diketocyclopentenylidene enamine,” ?e Journal of Organic Chemistry, vol. 58, no. 15, pp. 4149-4150, 1993.
[96] D. Gochfeld, K. El Sayed, M. Yousaf et al., “Marine natural products as lead anti-HIV agents,” Mini-Reviews in Medicinal Chemistry, vol. 3, no. 5, pp. 401–424, 2003.
[97] L. G. G´omez-Archila, W.Zapata , F. J. D´ıaz, M. T. Rugeles, E. Galeano, and A. Mart´ınez, “Bromotyrosine derivatives from marine sponges inhibit the HIV-1 replication in vitro,” Vitae, vol. 21, no. 2, pp. 114–125, 2014
[98] S. A. Ross, J. D. Weete, R. F. Schinazi et al., “Mololipids, A new series of anti-HIV bromotyramine-derived compounds from a sponge of the order Verongida†,” Journal of Natural Products, vol. 63, no. 4, pp. 501–503, 2000.
[99] P. Yogeeswari and D. Sriram, “Betulinic acid and its derivatives: a review on their biological properties,” Current Medicinal Chemistry, vol. 12, no. 6, pp. 657–666, 2005.
[100] D. E. Martin, R. Blum, J. Wilton et al., “Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3063–3066, 2007.
[101] D. E. Martin, R. Blum, J. Doto, H. Galbraith, and C. Ballow, “Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV Maturation, in healthy volunteers,” Clinical Pharmacokinetics, vol. 46, no. 7, pp. 589–598, 2007.
[102] P. F. Smith, A. Ogundele, A. Forrest et al., “Phase I and II study of the safety, virologic effect, and pharmacokinetics/ pharmacodynamics of single-dose 3-O-(3′,3′-Dimethylsuccinyl)Betulinic acid (bevirimat) against human immunodeficiency virus infection,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 10, pp. 3574–3581, 2007.
[103] N. A. Margot, C. S. Gibbs, and M. D. Miller, “Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 6, pp. 2345–2353, 2010.
[104] A. Neyret, B. Gay, A. Cransac et al., “Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation,” Antiviral Research, vol. 164, pp. 162–175, 2019.
[105] B. Labrosse, O. Pleskoff, N. Sol, C. Jones, Y. H´enin, and M. Alizon, “Resistance to a drug blocking human immunodeficiency virus type 1 entry (RPR103611) is conferred by mutations in gp41,” Journal of Virology, vol. 71, no. 11, pp. 8230–8236, 1997.
[106] B. Labrosse, C. Treboute, and M. Alizon, “Sensitivity to a nonpeptidic compound (RPR103611) blocking human immunodeficiency virus type 1 Env-mediated fusion depends on sequence and accessibility of the gp41 loop region,” Journal of Virology, vol. 74, no. 5, pp. 2142–2150, 2000.
[107] I. Kostova, S. Raleva, P. Genova, and R. Argirova, “Structureactivity relationships of synthetic coumarins as HIV-1 inhibitors,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 68274, 9 pages, 2006.
[108] B. Chenera, M. L. West, J. A. Finkelstein, and G. B. Dreyer’, “Total synthesis of (±)-calanolide A, a non-nucleoside inhibitor of HIV-1 reverse transcriptase,” ?e Journal of Organic Chemistry, vol. 58, no. 21, 1993.
[109] A. Kucherenko, M. T. Flavin, W. A. Boulanger et al., “Novel approach for synthesis of (±)-calanolide a and its anti-HIV activity,” Tetrahedron Letters, vol. 36, no. 31, 1995.
[110] M. T. Flavin, “Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-Calanolide A and its enantiomers,” Journal of Medicinal Chemistry, vol. 39, no. 6, 1995
[111] J. H. Cardellina, H. R. Bokesch, T. C. McKee, and M. R. Boyd, “Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B,” Bioorganic & Medicinal Chemistry Letters, vol. 5, no. 9, pp. 1011–1014, 1995
[112] R. W. Buckheit Jr., E. L. White, V. Fliakas-Boltz et al., “Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 8, pp. 1827–1834, 1999
[113] R. Buckheit Jr., V. Fliakasboltz, W. Decker et al., “Comparative anti-HIV evaluation of diverse HIV-1-specific reverse transcriptase inhibitor-resistant virus isolates demonstrates the existence of distinct phenotypic subgroups,” Antiviral Research, vol. 26, no. 2, pp. 117–132, 1995.
[114] J. C. Garc´ıa Zebad´ua, G. A. Magos Guerrero, M. Mumbr´u Massip et al., “Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico,” Fitoterapia, vol. 82, no. 7, pp. 1027–1034, 2011.
[115] T. Creagh, J. L. Ruckle, D. T. Tolbert et al., “Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 5, pp. 1379–1386, 2001.
[116] D. A. Eiznhamer, T. Creagh, J. L. Ruckle et al., “Safety and pharmacokinetic profile of multiple escalating doses of (+)-calanolide A, a naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy HIV-negative volunteers,” HIV Clinical Trials, vol. 3, no. 6, pp. 435–450, 2002.
[117] K. Matsuda, S. Hattori, R. Kariya et al., “Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity,” Biochemical and Biophysical Research Communications, vol. 457, no. 3, pp. 288–294, 2015
[118] H. Wang, Y. Liu, C. Huan et al., “NF-κB-Interacting long noncoding RNA regulates HIV-1 replication and latency by repressing NF-κB signaling,” Journal of Virology, vol. 94, no. 17, 2020.
[119] P. Bremner and M. Heinrich, “Natural products as targeted modulators of the nuclear factor-kappaB pathway,” ?e Journal of Pharmacy and Pharmacology, vol. 54, no. 4, pp. 453–472, 2002.
[120] M. Karin, Y. Yamamoto, and Q. M. Wang, “+e IKK NF-κB system: a treasure trove for drug development,” Nature Reviews Drug Discovery, vol. 3, no. 1, pp. 17–26, 2004.
[121] R. Sancho, N. Marquez, M. G ´ omez-Gonzalo et al., ´ “Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway,” Journal of Biological Chemistry, vol. 279, no. 36, pp. 37349–37359, 2004.
[122] E. Kozioł and K. Skalicka-Woz´niak, “Imperatorin–pharmacological meaning and analytical clues: profound investigation,” Phytochemistry Review, vol. 15, pp. 627–649, 2016.
[123] M. Deng, L. Xie, L. Zhong, Y. Liao, L. Liu, and X. Li, “Imperatorin: a review of its pharmacology, toxicity and pharmacokinetics,” European Journal of Pharmacology, vol. 879, 2020.
[124] G. Casano, A. Dum`etre, C. Pannecouque, S. Hutter, N. Azas, and M. Robin, “Anti-HIV and antiplasmodial activity of original flavonoid derivatives,” Bioorganic & Medicinal Chemistry, vol. 18, no. 16, pp. 6012–6023, 2010.
[125] T. P. T. Cushnie and A. J. Lamb, “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, vol. 26, no. 5, pp. 343–356, 2005.
[126] X. Zhao, K. Jiang, B. Liang, and X. Huang, “Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway,” Oncology Reports, vol. 35, no. 2, pp. 669–675, 2016.
[127] B. W. Vanhoecke, F. Delporte, E. Van Braeckel et al., “A safety study of oral tangeretin and xanthohumol administration to laboratory mice,” Vivo, vol. 19, no. 1, pp. 103–107, 2005.
[128] K. Yamaguchi, M. Honda, H. Ikigai, Y. Hara, and T. Shimamura, “Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1),” Antiviral Research, vol. 53, no. 1, pp. 19–34, 2002.
[129] K. Kawai, N. H. Tsuno, J. Kitayama et al., “Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding,” Journal of Allergy and Clinical Immunology, vol. 112, no. 5, pp. 951–957, 2003.
[130] C. L. Nance, E. B. Siwak, and W. T. Shearer, “Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 459–465, 2009.
[131] P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007.
[132] C. J. Li, L. J. Zhang, B. J. Dezube, C. S. Crumpacker, and A. B. Pardee, “+ree inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication,” Proceedings of the National Academy of Sciences, vol. 90, no. 5, pp. 1839–1842, 1993.
[133] A. Ali and A. C. Banerjea, “Curcumin inhibits HIV-1 by promoting Tat protein degradation,” Scientific Reports, vol. 627539 pages, 2016.
[134] A. L. Cheng, C. H. Hsu, J. K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with highrisk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4b, pp. 2895–2900, 2001.
[135] G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. Srinivas, “Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers,” Planta Medica, vol. 64, no. 4, pp. 353–356, 1998.
[136] P. Baldrian, “Fungal laccases-occurrence and properties,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 215–242, 2006.
[137] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, and G. Sannia, “Laccases: a never-ending story,” Cellular and Molecular Life Sciences, vol. 67, no. 3, pp. 369–385, 2010.
[138] M. Bottcher and F. Grosse, “HIV-1 protease inhibits its ¨ homologous reverse transcriptase by protein-protein interaction,” Nucleic Acids Research, vol. 25, pp. 1709–1714, 1997
[139] T. B. Ng and H. X. Wang, “A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 37–41, 2004.
[140] H. X. Wang and T. B. Ng, “A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus),” Biochemical and Biophysical Research Communications, vol. 319, no. 2, pp. 381–385, 2004.
[141] A. E. Franco Molano and E. Uribe-Calle, “Hongos agricales y boletales de Colombia,” Biota Colombiana, vol. 1, no. 1, pp. 25–43, 2000.
[142] C. Arboleda, A. I. Mej´ıa, A. E. Franco-Molano, G. A. Jim´enez, and J. Pm, “Autochthonous white rot fungi from the tropical forest of Colombia for dye decolourisation and ligninolytic enzymes production,” Sydowia, vol. 60, no. 2, pp. 165–180, 2008.
[143] A. Ruiz and A. Varela, “Nuevos registros de Aphyllophorales (Basidiomicota) en bosque montano h´umedo y de niebla de Colombia,” Caldasia, vol. 28, no. 2, pp. 259–266, 2006.
[144] L. Florez-sampedro, W.Zapata , W. Zapata et al., “In vitro ´ anti-HIV-1 activity of the enzymatic extract enriched with laccase produced by the fungi ganoderma sp. and lentinus sp,” Revista Vitae, vol. 23, no. 2, pp. 109–118, 2016.
[145] R. Goldstein Ijh, M. Monsigny, T. Osawa, and N. Sharon, “What should be called a lectin?” Nature, vol. 285, no. 66, 1980.
[146] H. Wang, T. B. Ng, and V. E. C. Ooi, “Lectins from mushrooms,” Mycological Research, vol. 102, no. 8, pp. 897–906, 1998.
[147] J. Guillot and G. Konska, “Lectins in higher fungi,” Biochemical Systematics and Ecology, vol. 25, no. 3, pp. 203–230, 1997.
[148] H. X. Wang, T. B. Ng, W. K. Liu, V. E. Ooi, and S. T. Chang, “Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum,” International Journal of Peptide and Protein Research, vol. 46, no. 6, pp. 508–513, 1995.
[149] P. H. K. Ngai and T. B. Ng, “Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells,” Life Sciences, vol. 73, no. 26, pp. 3363–3374, 2003.
[150] H. Wang, T. B. Ng, and Q. Liu, “Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cyli
[151] Q.-B. She, T.-B. Ng, and W.-K. Liu, “A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible MushroomVolvariella volvacea,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 106–111, 1998
[152] S. Sueyoshi, T. Tsuji, and T. Osawa, “Purification and characterization of four isolectins of mushroom (Agaricus bisporus),” Biol Chem Hoppe Seyler, vol. 366, no. 3, pp. 213–221, 1985
[153] S. Oguri, M. Yoshida, and Y. Nagata, “Isolation, crystallization, and characterization of a 16.5-kDa protein from fruit bodies of a lectin-deficient strain ofPleurotus cornucopiae,” Bioscience, Biotechnology, and Biochemistry, vol. 58, no. 3, pp. 502–506, 1994
[154] T.-S. Vo and S.-K. Kim, “Potential anti-HIV agents from marine resources: an overview,” Marine Drugs, vol. 8, no. 12, pp. 2871–2892, 2010.
[155] M. D. Swanson, H. C. Winter, I. J. Goldstein, and D. M. Markovitz, “A lectin isolated from bananas is a potent inhibitor of HIV replication,” Journal of Biological Chemistry, vol. 285, no. 12, pp. 8646–8655, 2010.
[156] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2004.
[157] K. B. Alexandre, E. S. Gray, B. E. Lambson et al., “Mannoserich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin,” Virology, vol. 402, no. 1, pp. 187–196, 2010.
[158] P. Emau, B. Tian, B. R. O’keefe et al., “Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide,” Journal of Medical Primatology, vol. 36, no. 4-5, pp. 244–253, 2007.
[159] B. R. O’Keefe, F. Vojdani, V. Buffa et al., “Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component,” Proceedings of the National Academy of Sciences, vol. 106, no. 15, pp. 6099–6104, 2009
[160] J. C. Kouokam, D. Huskens, D. Schols et al., “Investigation of griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate,” PLoS One, vol. 6, no. 8, Article ID e22635, 2011.
[161] C. Barton, J. C. Kouokam, A. B. Lasnik et al., “Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 1, pp. 120–127, 2014.
[162] G. Ferir, K. E. Palmer, and D. Schols, “Synergistic activity ´ profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C,” Virology, vol. 417, no. 2, pp. 253–258, 2011.
[163] L. F. Kramzer, K. T. Hamorsky, P. W. Graebing et al., “Preformulation characterization of griffithsin, a biopharmaceutical candidate for HIV prevention,” AAPS PharmSciTech, vol. 22, no. 3, 83 pages, 2021.
[164] G. G¨unaydın, G. Edfeldt, D. A. Garber et al., “Impact of Q-Griffithsin anti-HIV microbicide gel in non-human primates: in situ analyses of epithelial and immune cell markers in rectal mucosa,” Scientific Reports, vol. 9, no.1, 18120 pages, 2019.
[165] K. R. Crakes, C. Herrera, J. L. Morgan et al., “Efficacy of silk fibroin biomaterial vehicle for in vivo mucosal delivery of Griffithsin and protection against HIV and SHIV infection ex vivo,” Journal of the International AIDS Society, vol. 23, no. 10, Article ID e25628, 2020.
[166] F. Minooei, J. R. Fried, J. L. Fuqua, K. E. Palmer, and J. M. Steinbach-Rankins, “In vitro study on synergistic interactions between free and encapsulated Q-griffithsin and antiretrovirals against HIV-1 infection,” International Journal of Nanomedicine, vol. 16, pp. 1189–1206, 2021
[167] “Study to evaluate the safety of griffithsin in a carrageenan gel in healthy women clinicaltrials,” 2021, https://clinicaltrials. gov/ct2/show/study/NCT02875119.
[168] “Griffithsin-based rectal microbicide for PREvention of viral ENTry,” 2021, https://clinicaltrials.gov/ct2/show/ NCT04032717
[169] R. A. Collins, T. B. Ng, W. P. Fong, C. C. Wan, and H. W. Yeung, “A comparison of human immunodeficiency virus type 1 inhibition by partially purified aqueous extracts of Chinese medicinal herbs,” Life Sciences, vol. 60, no. 23, pp. Pl345–PL351, 1997.
[170] Q.-Z. Yao, M. M. Yu, L. S. M. Ooi et al., “Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (volvariella volvacea),” Journal of Agricultural and Food Chemistry, vol. 46, no. 2, pp. 788–792, 1998.
[171] T. Girbes, J. Ferreras, F. Arias, and F. Stirpe, “Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria,” Mini-Reviews in Medicinal Chemistry, vol. 4, no. 5, pp. 461–476, 2004
[172] S. A. Kidwai, A. A. Ansari, and A. Salahuddin, “Effect of succinylation (3-carboxypropionylation) on the conformation and immunological activity of ovalbumin,” Biochemical Journal, vol. 155, no. 1, pp. 171–180, 1976
[173] P.-C. Shaw, K.-M. Lee, and K.-B. Wong, “Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties,” Toxicon, vol. 45, no. 6, pp. 683–689, 2005
[174] M. S. McGrath, K. M. Hwang, S. E. Caldwell et al., “GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage,” Proceedings of the National Academy of Sciences, vol. 86, no. 8, pp. 2844–2848, 1989
[175] Y.-Y. Wang, D.-Y. Ouyang, H. Huang, H. Chan, S.-C. Tam, and Y.-T. Zheng, “Enhanced apoptotic action of trichosanthin in HIV-1 infected cells,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 1075–1080, 2005.
[176] W.-L. Zhao, D. Feng, J. Wu, and S.-F. Sui, “Trichosanthin inhibits integration of human immunodeficiency virus type 1 through depurinating the long-terminal repeats,” Molecular Biology Reports, vol. 37, no. 4, pp. 2093–2098, 2010.
[177] W. Zhao, D. Feng, S. Sun, T. Han, and S. Sui, “+e anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 2, pp. 91–97, 2010.
[178] V. Byers, A. Levin, L. Waites et al., “A phase I/II study of trichostathin treatment of HIV desease,” Current Science, vol. 4, no. 2, pp. 1189–1196, 1990.
[179] V. S. Byers, A. S. Levin, A. Malvino, L. Waites, R. A. Robins, and R. W. Baldwin, “A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents,” AIDS Research and Human Retroviruses, vol. 10, no. 4, pp. 413–420, 1994.
[180] J. O. Kahn, K. J. Gorelick, G. Gatti et al., “Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 2, pp. 260–267, 1994.
[181] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies,” Nature, vol. 347, no. 6288, pp. 92–95, 1990.
[182] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV-1 replication in seropositive patients’ CD4+ T-cells by pokeweed antiviral protein-monoclonal antibody conjugates,” International Journal of Immunopharmacology, vol. 13, no. 1, pp. 63–68, 1991.
[183] G. Krivdova and K. A. Hudak, “Pokeweed antiviral protein restores levels of cellular APOBEC3G during HIV-1 infection by depurinating Vif mRNA,” Antiviral Research, vol. 122, pp. 51–54, 2015.
[184] M. H. Pastrana Restrepo, S´ıntesis de derivados clorados y bromados de la l-tirosina y evaluacion in vitro de sus acti-´ vidades antiparasitarias, Universidad de Antioquia, Antioquia, Colombia, 2016.
[185] P. Ciminiello, C. Dell’Aversano, E. Fattorusso, S. Magno, L. Carrano, and M. Pansini, “Chemistry of Verongida sponges. VII bromocompounds from the caribbean sponge Aplysina archeri,” Tetrahedron, vol. 52, no. 29, pp. 9863–9868, 1996.
Repositorio UCC
Universidad Cooperativa de Colombia
instacron:Universidad Cooperativa de Colombia
Advances in Virology, Vol 2021 (2021)
[1] S. G. Deeks, S. R. Lewin, and D. V. Havlir, “+e end of AIDS: HIV infection as a chronic disease,” ?e Lancet, vol. 382, no. 9903, pp. 1525–1533, 2013
[2] UNAIDS, Global HIV & AIDS Statistics-2020 Fact Sheet, UNAIDS, Geneva, Switzerland, unaids.org2020, 2020.
[3] S. B. Laskey and R. F. Siliciano, “A mechanistic theory to explain the efficacy of antiretroviral therapy,” Nature Reviews Microbiology, vol. 12, no. 11, pp. 772–780, 2014.
[4] T. B. Ng, B. Huang, W. P. Fong, and H. W. Yeung, “Antihuman immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors,” Life Sciences, vol. 61, no. 10, pp. 933–949, 1997.
[5] Panel on Antiretroviral Guidelines for Adults and Adolescents, Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV, Department of Health and Human Services, Washington, DC, USA, 2019.
[6] Organization WH, Guideline on when to Start Antiretroviral ?erapy and on Pre-exposure Prophylaxis for HIV, 78 pages, World Health Organization, Geneva, Switzerland, 2015.
[7] D. King, S. Tomkins, A. Waters et al., “Intracellular cytokines may model immunoregulation of abacavir hypersensitivity in HIV-infected subjects,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 1081–1087, 2005
[8] J. Stekler, J. Maenza, C. Stevens et al., “Abacavir hypersensitivity reaction in primary HIV infection,” Aids, vol. 20, no. 9, pp. 1269–1274, 2006.
[9] B. S. Peters and K. Conway, “+erapy for HIV,” Advances in Dental Research, vol. 23, no. 1, pp. 23–27, 2011.
[10] V. Montessori, N. Press, M. Harris, L. Akagi, and J. S. Montaner, “Adverse effects of antiretroviral therapy for HIV infection,” CMAJ: Canadian Medical Association Journal, vol. 170, no. 2, pp. 229–238, 2004.
[11] S. Esser, D. Helbig, U. Hillen, J. Dissemond, and S. Grabbe, “Side effects of HIV therapy,” JDDG, vol. 5, no. 9, pp. 745–754, 2007
[12] L. Menendez-Arias, “Targeting HIV: antiretroviral therapy ´ and development of drug resistance,” Trends in Pharmacological Sciences, vol. 23, no. 8, pp. 381–388, 2002.
[13] E. M. Gardner, W. J. Burman, J. F. Steiner, P. L. Anderson, and D. R. Bangsberg, “Antiretroviral medication adherence and the development of class-specific antiretroviral resistance,” AIDS, vol. 23, no. 9, pp. 1035–1046, 2009
[14] J. B. Nachega, V. C. Marconi, G. U. van Zyl et al., “HIV treatment adherence, drug resistance, virologic failure: evolving concepts,” Infectious Disorders Drug Targets, vol. 11, no. 2, pp. 167–174, 2011.
[15] P. Yeni, “Update on HAART in HIV,” Journal of Hepatology, vol. 44, 2006
[16] F. Nakagawa, A. Miners, C. J. Smith et al., “Projected lifetime healthcare costs associated with HIV infection,” PLoS One, vol. 10, no. 4, Article ID e0125018, 2015.
[17] N. E. +omford, D. A. Senthebane, A. Rowe et al., “Natural products for drug discovery in the 21st century: innovations for novel drug discovery,” International Journal of Molecular Sciences, vol. 19, no. 6, 2018.
[18] L. Palmisano and S. Vella, “A brief history of antiretroviral therapy of HIV infection: success and challenges,” Annali dell’Istituto Superiore di Sanita, vol. 47, no. 1, pp. 44–48, 2011.
[19] K. Vermani and S. Garg, “Herbal medicines for sexually transmitted diseases and AIDS,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 49–66, 2002.
[20] D. Chattopadhyay, M. C. Sarkar, T. Chatterjee et al., “Recent advancements for the evaluation of anti-viral activities of natural products,” New Biotechnology, vol. 25, no. 5, pp. 347–368, 2009.
[21] K. Yazaki, G.-i. Arimura, and T. Ohnishi, “Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles,” Plant and Cell Physiology, vol. 58, no. 10, pp. 1615–1621, 2017
[22] D. +oll, “Biosynthesis and biological functions of terpenoids in plants,” Biotechnology of Isoprenoids, vol. 148, pp. 63–106, 2015.
[23] J.-H. Yu, G.-C. Wang, Y.-S. Han, Y. Wu, M. A. Wainberg, and J.-M. Yue, “Limonoids with anti-HIV activity from Cipadessa cinerascens,” Journal of Natural Products, vol. 78, no. 6, pp. 1243–1252, 2015.
[24] M. Shahidul Alam, M. A. Quader, and M. A. Rashid, “HIVinhibitory diterpenoid from Anisomeles indica,” Fitoterapia, vol. 71, no. 5, pp. 574–576, 2000.
[25] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Terpenoids and their anti-HIV-1 activities from Excoecaria acerifolia,” Fitoterapia, vol. 91, pp. 224–230, 2013.
[26] S.-Z. Huang, X. Zhang, Q.-Y. Ma et al., “Anti-HIV-1 tigliane diterpenoids from Excoecaria acertiflia Didr,” Fitoterapia, vol. 95, pp. 34–41, 2014.[27] S.-F. Li, Y. Zhang, N. Huang et al., “Daphnane diterpenoids from the stems of Trigonostemon lii and their anti-HIV-1 activity,” Phytochemistry, vol. 93, pp. 216–221, 2013.
[28] Y.-Y. Cheng, H. Chen, H.-P. He et al., “Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum,” Phytochemistry, vol. 96, pp. 360–369, 2013.
[29] T. Fujioka, Y. Kashiwada, R. E. Kilkuskie et al., “Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids,” Journal of Natural Products, vol. 57, no. 2, pp. 243–247, 1994.
[30] T. Kanamoto, Y. Kashiwada, K. Kanbara et al., “Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 1225–1230, 2001.
[31] F. Li, R. Goila-Gaur, K. Salzwedel et al., “PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing,” Proceedings of the National Academy of Sciences, vol. 100, no. 23, pp. 13555–13560, 2003.
[32] Y. Zhao, Q. Gu, S. L. Morris-Natschke, C.-H. Chen, and K.-H. Lee, “Incorporation of privileged structures into bevirimat can improve activity against wild-type and bevirimat-resistant HIV-1,” Journal of Medicinal Chemistry, vol. 59, no. 19, pp. 9262–9268, 2016.
[33] F. Soler, C. Poujade, M. Evers et al., “Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry,” Journal of Medicinal Chemistry, vol. 39, no. 5, pp. 1069–1083, 1996.
[34] J. Tang, S. A. Jones, J. L. Jeffrey et al., “Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms,” Bioorganic & Medicinal Chemistry Letters, vol. 27, no. 12, pp. 2689–2694, 2017.
[35] H.-X. Xu, F.-Q. Zeng, M. Wan, and K.-Y. Sim, “Anti-HIV triterpene acids fromGeum japonicum,” Journal of Natural Products, vol. 59, no. 7, pp. 643–645, 1996.
[36] Y. Kashiwada, T. Nagao, A. Hashimoto et al., “Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid Derivatives1,” Journal of Natural Products, vol. 63, no. 12, pp. 1619–1622, 2000
[37] N. Kongkum, P. Tuchinda, M. Pohmakotr et al., “Cytotoxic, antitopoisomerase IIα, and anti-HIV-1 activities of triterpenoids isolated from leaves and twigs of Gardenia carinata,” Journal of Natural Products, vol. 76, no. 4, pp. 530–537, 2013.
[38] S. el-Mekkawy, M. R. Meselhy, N. Nakamura et al., “AntiHIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum,” Phytochemistry, vol. 49, no. 6, pp. 1651–1657, 1998.
[39] B.-S. Min, N. Nakamura, H. Miyashiro, K.-W. Bae, and M. Hattori, “Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 10, pp. 1607–1612, 1998
[40] T. Konoshima, I. Yasuda, Y. Kashiwada, L. M. Cosentino, and K.-H. Lee, “Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of gleditsia japonica and gymnocladus chinesis, and a structure-activity correlation,” Journal of Natural Products, vol. 58, no. 9, pp. 1372–1377, 1995.
[41] Y. Kashman, K. R. Gustafson, R. W. Fuller et al., “HIV inhibitory natural products. Part 7. +e calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum,” Journal of Medicinal Chemistry, vol. 35, no. 15, pp. 2735–2743, 1992.
[42] M. Huerta-Reyes, M. d. C. Basualdo, F. Abe, M. JimenezEstrada, C. Soler, and R. Reyes-Chilpa, “HIV-1 inhibitory compounds from Calophyllum brasiliense leaves,” Biological and Pharmaceutical Bulletin, vol. 27, no. 9, pp. 1471–1475, 2004
[43] A. D. Patil, A. J. Freyer, D. S. Eggleston et al., “+e inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn,” Journal of Medicinal Chemistry, vol. 36, no. 26, pp. 4131–4138, 1993.
[44] H. Dharmaratne, W. Wanigasekera, E. Mata-Greenwood, and J. Pezzuto, “Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated fromCalophyllum cordato-oblongum,” Planta Medica, vol. 64, no. 05, pp. 460-461, 1998.
[45] H. R. W. Dharmaratne, G. T. Tan, G. P. K. Marasinghe, and J. M. Pezzuto, “Inhibition of HIV-1 reverse transcriptase and HIV-1 replication by Calophyllum coumarins and xanthones,” Planta Medica, vol. 68, no. 1, pp. 86-87, 2002.
[46] E. Kudo, M. Taura, K. Matsuda et al., “Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 3, pp. 606–609, 2013.
[47] P. Zhou, Y. Takaishi, H. Duan et al., “Coumarins and bicoumarin from Ferula sumbul: anti-HIV activity and inhibition of cytokine release,” Phytochemistry, vol. 53, no. 6, pp. 689–697, 2000.
[48] N. Marquez, R. Sancho, L. M. Bedoya et al., “Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-kappaB pathway,” Antiviral Research, vol. 66, no. 2-3, pp. 137–145, 2005.
[49] Q. Wang, Z. Ding, J. Liu, and Y. Zheng, “Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus,” Antiviral Research, vol. 64, no. 3, pp. 189–194, 2004.
[50] D. C. Rowley, M. S. T. Hansen, D. Rhodes et al., “+alassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase,” Bioorganic & Medicinal Chemistry, vol. 10, no. 11, pp. 3619–3625, 2002
[51] N. Mahmood, C. Pizza, R. Aquino et al., “Inhibition of HIV infection by flavanoids,” Antiviral Research, vol. 22, no. 2-3, pp. 189–199, 1993.
[52] S. Li, T. Hattori, and E. N. Kodama, “Epigallocatechin gallate inhibits the HIV reverse transcription step,” Antiviral Chemistry and Chemotherapy, vol. 21, no. 6, pp. 239–243, 2011.
[53] K. Kitamura, M. Honda, H. Yoshizaki et al., “Baicalin, an inhibitor of HIV-1 production in vitro,” Antiviral Research, vol. 37, no. 2, pp. 131–140, 1998.
[54] B. Q. Li, T. Fu, Y. Dongyan, J. A. Mikovits, F. W. Ruscetti, and J. M. Wang, “Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry,” Biochemical and Biophysical Research Communications, vol. 276, no. 2, pp. 534–538, 2000.
[55] S. Pasetto, V. Pardi, and R. M. Murata, “Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model,” PLoS One, vol. 9, no. 12, Article ID e115323, 2014.
[56] P. Chaniad, C. Wattanapiromsakul, S. Pianwanit, and S. Tewtrakul, “Anti-HIV-1 integrase compounds fromDioscorea bulbiferaand molecular docking study,” Pharmaceutical Biology, vol. 54, no. 6, pp. 1077–1085, 2016
[57] J. T. Ortega, A. I. Suarez, M. L. Serrano, J. Baptista, F. H. Pujol, and H. R. Rangel, “+e role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro,” AIDS Research and ?erapy, vol. 14, no. 1, 57 pages, 2017.
[58] A. Mazumder, K. Raghavan, J. Weinstein, K. W. Kohn, and Y. Pommier, “Inhibition of human immunodeficiency virus type-1 integrase by curcumin,” Biochemical Pharmacology, vol. 49, no. 8, pp. 1165–1170, 1995.
[59] A. Mazumder, N. Neamati, S. Sunder et al., “Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action,” Journal of Medicinal Chemistry, vol. 40, no. 19, pp. 3057– 3063, 1997.
[60] N. Kumari, A. A. Kulkarni, X. Lin et al., “Inhibition of HIV-1 by curcumin A, a novel curcumin analog,” Drug Design, Development and ?erapy, vol. 9, pp. 5051–5060, 2015.
[61] R. A. Reinke, D. J. Lee, B. R. McDougall et al., “L-chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro,” Virology, vol. 326, no. 2, pp. 203–219, 2004.
[62] Y.-J. Zou, H.-X. Wang, T.-B. Ng, C.-Y. Huang, and J.-X. Zhang, “Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides,” ?e Journal of Microbiology, vol. 50, no. 1, pp. 72–78, 2012.
[63] H. X. Wang and T. B. Ng, “A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” Biochemical and Biophysical Research Communications, vol. 322, no. 1, pp. 17–21, 2004.
[64] M. Li, G. Zhang, H. Wang, and T. Ng, “Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum,” Journal of Microbiology and Biotechnology, vol. 20, no. 7, pp. 1069–1076, 2010.
[65] H. X. Wang and T. B. Ng, “A laccase from the medicinal mushroom Ganoderma lucidum,” Applied Microbiology and Biotechnology, vol. 72, no. 3, pp. 508–513, 2006
[66] J. Sun, Q. J. Chen, Q. Q. Cao et al., “A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces,” Journal of Biomedicine & Biotechnology, vol. 2012, Article ID 736472, 12 pages, 2012.
[67] D. D. Hu, R. Y. Zhang, G. Q. Zhang, H. X. Wang, and T. B. Ng, “A laccase with antiproliferative activity against tumor cells from an edible mushroom, white common Agrocybe cylindracea,” Phytomedicine, vol. 18, no. 5, pp. 374–379, 2011
[68] H. X. Wang and T. B. Ng, “Purification of a novel lowmolecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum,” Biochemical and Biophysical Research Communications, vol. 315, no. 2, pp. 450–454, 2004.
[69] S. Zhao, C. B. Rong, C. Kong et al., “A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus,” BioMed Research International, vol. 2014, Article ID 417461, 8 pages, 2014.
[70] X. Wu, C. Huang, Q. Chen, H. Wang, and J. Zhang, “A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroomPleurotus cornucopiae,” Biomedical Chromatography, vol. 28, no. 4, pp. 548–553, 2014.
[71] J. H. Wong, T. B. Ng, Y. Jiang, F. Liu, S. C. Sze, and K. Y. Zhang, “Purification and characterization of a Laccase with inhibitory activity toward HIV-1 reverse transcriptase and tumor cells from an edible mushroom (Pleurotus cornucopiae),” Protein and Peptide Letters, vol. 17, no. 8, pp. 1040–1047, 2010.
[72] G.-Q. Zhang, Y.-F. Wang, X.-Q. Zhang, T. B. Ng, and H.-X. Wang, “Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima,” Process Biochemistry, vol. 45, no. 5, pp. 627–633, 2010.
[73] L. Xu, H. Wang, and T. Ng, “A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus,” BioMed Research International, vol. 2012, Article ID 536725, 7 pages, 2012.
[74] J. Sun, H. Wang, and T. B. Ng, “Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes (Shiitake mushroom),” Indian Journal of Biochemistry & Biophysics, vol. 48, no. 2, pp. 88–94, 2011.
[75] H. X. Wang and T. B. Ng, “Examination of lectins, polysaccharopeptide, polysaccharide, alkaloid, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycohydrolases,” Planta Medica, vol. 67, no. 7, pp. 669–672, 2001.
[76] J. Balzarini, D. Schols, J. Neyts, E. Van Damme, W. Peumans, and E. De Clercq, “Alpha-(1-3)-and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro,” Antimicrobial Agents and Chemotherapy, vol. 35, no. 3, pp. 410–416, 1991.
[77] J. Balzarini, J. Neyts, D. Schols et al., “+e mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro,” Antiviral Research, vol. 18, no. 2, pp. 191–207, 1992.
[78] R. D. Charan, M. H. G. Munro, B. R. O’Keefe et al., “Isolation and characterization ofMyrianthus holstiiLectin, a potent HIV-1 inhibitory protein from the PlantMyrianthus holstii1,” Journal of Natural Products, vol. 63, no. 8, pp. 1170–1174, 2000
[79] G. Ferir, D. Huskens, S. Noppen, L. M. I. Koharudin, ´ A. M. Gronenborn, and D. Schols, “Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family,” Journal of Antimicrobial Chemotherapy, vol. 69, no. 10, pp. 2746–2758, 2014.
[80] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2005.
[81] S. Zhao, Y. Zhao, S. Li et al., “A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica,” Glycoconjugate Journal, vol. 27, no. 2, pp. 259–265, 2010.
[82] Y. R. Li, Q. H. Liu, H. X. Wang, and T. B. Ng, “A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1780, no. 1, pp. 51–57, 2008.
[83] C. H. Han, Q. H. Liu, T. B. Ng, and H. X. Wang, “A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune,” Biochemical and Biophysical Research Communications, vol. 336, no. 1, pp. 252–257, 2005.
[84] G. Q. Zhang, J. Sun, H. X. Wang, and T. B. Ng, “A novel lectin with antiproliferative activity from the medicinal mushroom Pholiota adiposa,” Acta Biochimica Polonica, vol. 56, no. 3, pp. 415–421, 2009.
[85] J. K. Zhao, H. X. Wang, and T. B. Ng, “Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella,” Toxicon, vol. 53, no. 3, pp. 360–366, 2009.
[86] S. Zheng, C. Li, T. B. Ng, and H. X. Wang, “A lectin with mitogenic activity from the edible wild mushroom Boletus edulis,” Process Biochemistry, vol. 42, no. 12, pp. 1620–1624, 2007.
[87] Y. Li, G. Zhang, T. B. Ng, and H. Wang, “A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum,” BioMed Research International, vol. 2010, Article ID 716515, 9 pages, 2010.
[88] H. Wang and T. B. Ng, “Isolation and characterization of velutin, a novel low-molecular-weight ribosome-inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies,” Life Sciences, vol. 68, no. 18, pp. 2151–2158, 2001.
[89] S. K. Lam and T. B. Ng, “First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects,” Archives of Biochemistry and Biophysics, vol. 393, no. 2, pp. 271–280, 2001
[90] S. K. Lam and T. B. Ng, “Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 1071–1075, 2001.
[91] J. H. Wong, H. X. Wang, and T. B. Ng, “Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus,” Applied Microbiology and Biotechnology, vol. 81, no. 4, pp. 669–674, 2008
[92] Y.-M. Ng, Y. Yang, K.-H. Sze, X. Zhang, Y.-T. Zheng, and P.-C. Shaw, “Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica),” Journal of Structural Biology, vol. 174, no. 1, pp. 164–172, 2011.
[93] I. Kaur, M. Puri, Z. Ahmed, F. P. Blanchet, B. Mangeat, and V. Piguet, “Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina,” PLoS One, vol. 8, no. 9, Article ID e73780, 2013.
[94] F. Rajamohan, T. K. Venkatachalam, J. D. Irvin, and F. M. Uckun, “Pokeweed antiviral protein isoforms PAP-I, PAP-II, and PAP-III depurinate RNA of human immunodeficiency virus (HIV)-1,” Biochemical and Biophysical Research Communications, vol. 260, no. 2, pp. 453–458, 1999.
[95] T. Ichiba, P. J. Scheuer, M. Kelly-borges, and F. Pierce, “+ree bromotyrosine derivatives, one terminating in an unprecedented diketocyclopentenylidene enamine,” ?e Journal of Organic Chemistry, vol. 58, no. 15, pp. 4149-4150, 1993.
[96] D. Gochfeld, K. El Sayed, M. Yousaf et al., “Marine natural products as lead anti-HIV agents,” Mini-Reviews in Medicinal Chemistry, vol. 3, no. 5, pp. 401–424, 2003.
[97] L. G. G´omez-Archila, W.
[98] S. A. Ross, J. D. Weete, R. F. Schinazi et al., “Mololipids, A new series of anti-HIV bromotyramine-derived compounds from a sponge of the order Verongida†,” Journal of Natural Products, vol. 63, no. 4, pp. 501–503, 2000.
[99] P. Yogeeswari and D. Sriram, “Betulinic acid and its derivatives: a review on their biological properties,” Current Medicinal Chemistry, vol. 12, no. 6, pp. 657–666, 2005.
[100] D. E. Martin, R. Blum, J. Wilton et al., “Safety and pharmacokinetics of Bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3063–3066, 2007.
[101] D. E. Martin, R. Blum, J. Doto, H. Galbraith, and C. Ballow, “Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV Maturation, in healthy volunteers,” Clinical Pharmacokinetics, vol. 46, no. 7, pp. 589–598, 2007.
[102] P. F. Smith, A. Ogundele, A. Forrest et al., “Phase I and II study of the safety, virologic effect, and pharmacokinetics/ pharmacodynamics of single-dose 3-O-(3′,3′-Dimethylsuccinyl)Betulinic acid (bevirimat) against human immunodeficiency virus infection,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 10, pp. 3574–3581, 2007.
[103] N. A. Margot, C. S. Gibbs, and M. D. Miller, “Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 6, pp. 2345–2353, 2010.
[104] A. Neyret, B. Gay, A. Cransac et al., “Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation,” Antiviral Research, vol. 164, pp. 162–175, 2019.
[105] B. Labrosse, O. Pleskoff, N. Sol, C. Jones, Y. H´enin, and M. Alizon, “Resistance to a drug blocking human immunodeficiency virus type 1 entry (RPR103611) is conferred by mutations in gp41,” Journal of Virology, vol. 71, no. 11, pp. 8230–8236, 1997.
[106] B. Labrosse, C. Treboute, and M. Alizon, “Sensitivity to a nonpeptidic compound (RPR103611) blocking human immunodeficiency virus type 1 Env-mediated fusion depends on sequence and accessibility of the gp41 loop region,” Journal of Virology, vol. 74, no. 5, pp. 2142–2150, 2000.
[107] I. Kostova, S. Raleva, P. Genova, and R. Argirova, “Structureactivity relationships of synthetic coumarins as HIV-1 inhibitors,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 68274, 9 pages, 2006.
[108] B. Chenera, M. L. West, J. A. Finkelstein, and G. B. Dreyer’, “Total synthesis of (±)-calanolide A, a non-nucleoside inhibitor of HIV-1 reverse transcriptase,” ?e Journal of Organic Chemistry, vol. 58, no. 21, 1993.
[109] A. Kucherenko, M. T. Flavin, W. A. Boulanger et al., “Novel approach for synthesis of (±)-calanolide a and its anti-HIV activity,” Tetrahedron Letters, vol. 36, no. 31, 1995.
[110] M. T. Flavin, “Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-Calanolide A and its enantiomers,” Journal of Medicinal Chemistry, vol. 39, no. 6, 1995
[111] J. H. Cardellina, H. R. Bokesch, T. C. McKee, and M. R. Boyd, “Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B,” Bioorganic & Medicinal Chemistry Letters, vol. 5, no. 9, pp. 1011–1014, 1995
[112] R. W. Buckheit Jr., E. L. White, V. Fliakas-Boltz et al., “Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 8, pp. 1827–1834, 1999
[113] R. Buckheit Jr., V. Fliakasboltz, W. Decker et al., “Comparative anti-HIV evaluation of diverse HIV-1-specific reverse transcriptase inhibitor-resistant virus isolates demonstrates the existence of distinct phenotypic subgroups,” Antiviral Research, vol. 26, no. 2, pp. 117–132, 1995.
[114] J. C. Garc´ıa Zebad´ua, G. A. Magos Guerrero, M. Mumbr´u Massip et al., “Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico,” Fitoterapia, vol. 82, no. 7, pp. 1027–1034, 2011.
[115] T. Creagh, J. L. Ruckle, D. T. Tolbert et al., “Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 5, pp. 1379–1386, 2001.
[116] D. A. Eiznhamer, T. Creagh, J. L. Ruckle et al., “Safety and pharmacokinetic profile of multiple escalating doses of (+)-calanolide A, a naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy HIV-negative volunteers,” HIV Clinical Trials, vol. 3, no. 6, pp. 435–450, 2002.
[117] K. Matsuda, S. Hattori, R. Kariya et al., “Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity,” Biochemical and Biophysical Research Communications, vol. 457, no. 3, pp. 288–294, 2015
[118] H. Wang, Y. Liu, C. Huan et al., “NF-κB-Interacting long noncoding RNA regulates HIV-1 replication and latency by repressing NF-κB signaling,” Journal of Virology, vol. 94, no. 17, 2020.
[119] P. Bremner and M. Heinrich, “Natural products as targeted modulators of the nuclear factor-kappaB pathway,” ?e Journal of Pharmacy and Pharmacology, vol. 54, no. 4, pp. 453–472, 2002.
[120] M. Karin, Y. Yamamoto, and Q. M. Wang, “+e IKK NF-κB system: a treasure trove for drug development,” Nature Reviews Drug Discovery, vol. 3, no. 1, pp. 17–26, 2004.
[121] R. Sancho, N. Marquez, M. G ´ omez-Gonzalo et al., ´ “Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway,” Journal of Biological Chemistry, vol. 279, no. 36, pp. 37349–37359, 2004.
[122] E. Kozioł and K. Skalicka-Woz´niak, “Imperatorin–pharmacological meaning and analytical clues: profound investigation,” Phytochemistry Review, vol. 15, pp. 627–649, 2016.
[123] M. Deng, L. Xie, L. Zhong, Y. Liao, L. Liu, and X. Li, “Imperatorin: a review of its pharmacology, toxicity and pharmacokinetics,” European Journal of Pharmacology, vol. 879, 2020.
[124] G. Casano, A. Dum`etre, C. Pannecouque, S. Hutter, N. Azas, and M. Robin, “Anti-HIV and antiplasmodial activity of original flavonoid derivatives,” Bioorganic & Medicinal Chemistry, vol. 18, no. 16, pp. 6012–6023, 2010.
[125] T. P. T. Cushnie and A. J. Lamb, “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, vol. 26, no. 5, pp. 343–356, 2005.
[126] X. Zhao, K. Jiang, B. Liang, and X. Huang, “Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway,” Oncology Reports, vol. 35, no. 2, pp. 669–675, 2016.
[127] B. W. Vanhoecke, F. Delporte, E. Van Braeckel et al., “A safety study of oral tangeretin and xanthohumol administration to laboratory mice,” Vivo, vol. 19, no. 1, pp. 103–107, 2005.
[128] K. Yamaguchi, M. Honda, H. Ikigai, Y. Hara, and T. Shimamura, “Inhibitory effects of (−)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1),” Antiviral Research, vol. 53, no. 1, pp. 19–34, 2002.
[129] K. Kawai, N. H. Tsuno, J. Kitayama et al., “Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding,” Journal of Allergy and Clinical Immunology, vol. 112, no. 5, pp. 951–957, 2003.
[130] C. L. Nance, E. B. Siwak, and W. T. Shearer, “Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 459–465, 2009.
[131] P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007.
[132] C. J. Li, L. J. Zhang, B. J. Dezube, C. S. Crumpacker, and A. B. Pardee, “+ree inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication,” Proceedings of the National Academy of Sciences, vol. 90, no. 5, pp. 1839–1842, 1993.
[133] A. Ali and A. C. Banerjea, “Curcumin inhibits HIV-1 by promoting Tat protein degradation,” Scientific Reports, vol. 627539 pages, 2016.
[134] A. L. Cheng, C. H. Hsu, J. K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with highrisk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4b, pp. 2895–2900, 2001.
[135] G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. Srinivas, “Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers,” Planta Medica, vol. 64, no. 4, pp. 353–356, 1998.
[136] P. Baldrian, “Fungal laccases-occurrence and properties,” FEMS Microbiology Reviews, vol. 30, no. 2, pp. 215–242, 2006.
[137] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, and G. Sannia, “Laccases: a never-ending story,” Cellular and Molecular Life Sciences, vol. 67, no. 3, pp. 369–385, 2010.
[138] M. Bottcher and F. Grosse, “HIV-1 protease inhibits its ¨ homologous reverse transcriptase by protein-protein interaction,” Nucleic Acids Research, vol. 25, pp. 1709–1714, 1997
[139] T. B. Ng and H. X. Wang, “A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 37–41, 2004.
[140] H. X. Wang and T. B. Ng, “A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus),” Biochemical and Biophysical Research Communications, vol. 319, no. 2, pp. 381–385, 2004.
[141] A. E. Franco Molano and E. Uribe-Calle, “Hongos agricales y boletales de Colombia,” Biota Colombiana, vol. 1, no. 1, pp. 25–43, 2000.
[142] C. Arboleda, A. I. Mej´ıa, A. E. Franco-Molano, G. A. Jim´enez, and J. Pm, “Autochthonous white rot fungi from the tropical forest of Colombia for dye decolourisation and ligninolytic enzymes production,” Sydowia, vol. 60, no. 2, pp. 165–180, 2008.
[143] A. Ruiz and A. Varela, “Nuevos registros de Aphyllophorales (Basidiomicota) en bosque montano h´umedo y de niebla de Colombia,” Caldasia, vol. 28, no. 2, pp. 259–266, 2006.
[144] L. Florez-sampedro, W.
[145] R. Goldstein Ijh, M. Monsigny, T. Osawa, and N. Sharon, “What should be called a lectin?” Nature, vol. 285, no. 66, 1980.
[146] H. Wang, T. B. Ng, and V. E. C. Ooi, “Lectins from mushrooms,” Mycological Research, vol. 102, no. 8, pp. 897–906, 1998.
[147] J. Guillot and G. Konska, “Lectins in higher fungi,” Biochemical Systematics and Ecology, vol. 25, no. 3, pp. 203–230, 1997.
[148] H. X. Wang, T. B. Ng, W. K. Liu, V. E. Ooi, and S. T. Chang, “Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum,” International Journal of Peptide and Protein Research, vol. 46, no. 6, pp. 508–513, 1995.
[149] P. H. K. Ngai and T. B. Ng, “Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells,” Life Sciences, vol. 73, no. 26, pp. 3363–3374, 2003.
[150] H. Wang, T. B. Ng, and Q. Liu, “Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cyli
[151] Q.-B. She, T.-B. Ng, and W.-K. Liu, “A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultured mycelia of the edible MushroomVolvariella volvacea,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 106–111, 1998
[152] S. Sueyoshi, T. Tsuji, and T. Osawa, “Purification and characterization of four isolectins of mushroom (Agaricus bisporus),” Biol Chem Hoppe Seyler, vol. 366, no. 3, pp. 213–221, 1985
[153] S. Oguri, M. Yoshida, and Y. Nagata, “Isolation, crystallization, and characterization of a 16.5-kDa protein from fruit bodies of a lectin-deficient strain ofPleurotus cornucopiae,” Bioscience, Biotechnology, and Biochemistry, vol. 58, no. 3, pp. 502–506, 1994
[154] T.-S. Vo and S.-K. Kim, “Potential anti-HIV agents from marine resources: an overview,” Marine Drugs, vol. 8, no. 12, pp. 2871–2892, 2010.
[155] M. D. Swanson, H. C. Winter, I. J. Goldstein, and D. M. Markovitz, “A lectin isolated from bananas is a potent inhibitor of HIV replication,” Journal of Biological Chemistry, vol. 285, no. 12, pp. 8646–8655, 2010.
[156] T. Mori, B. R. O’Keefe, R. C. Sowder 2nd. et al., “Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9345–9353, 2004.
[157] K. B. Alexandre, E. S. Gray, B. E. Lambson et al., “Mannoserich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin,” Virology, vol. 402, no. 1, pp. 187–196, 2010.
[158] P. Emau, B. Tian, B. R. O’keefe et al., “Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide,” Journal of Medical Primatology, vol. 36, no. 4-5, pp. 244–253, 2007.
[159] B. R. O’Keefe, F. Vojdani, V. Buffa et al., “Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component,” Proceedings of the National Academy of Sciences, vol. 106, no. 15, pp. 6099–6104, 2009
[160] J. C. Kouokam, D. Huskens, D. Schols et al., “Investigation of griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate,” PLoS One, vol. 6, no. 8, Article ID e22635, 2011.
[161] C. Barton, J. C. Kouokam, A. B. Lasnik et al., “Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 1, pp. 120–127, 2014.
[162] G. Ferir, K. E. Palmer, and D. Schols, “Synergistic activity ´ profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C,” Virology, vol. 417, no. 2, pp. 253–258, 2011.
[163] L. F. Kramzer, K. T. Hamorsky, P. W. Graebing et al., “Preformulation characterization of griffithsin, a biopharmaceutical candidate for HIV prevention,” AAPS PharmSciTech, vol. 22, no. 3, 83 pages, 2021.
[164] G. G¨unaydın, G. Edfeldt, D. A. Garber et al., “Impact of Q-Griffithsin anti-HIV microbicide gel in non-human primates: in situ analyses of epithelial and immune cell markers in rectal mucosa,” Scientific Reports, vol. 9, no.1, 18120 pages, 2019.
[165] K. R. Crakes, C. Herrera, J. L. Morgan et al., “Efficacy of silk fibroin biomaterial vehicle for in vivo mucosal delivery of Griffithsin and protection against HIV and SHIV infection ex vivo,” Journal of the International AIDS Society, vol. 23, no. 10, Article ID e25628, 2020.
[166] F. Minooei, J. R. Fried, J. L. Fuqua, K. E. Palmer, and J. M. Steinbach-Rankins, “In vitro study on synergistic interactions between free and encapsulated Q-griffithsin and antiretrovirals against HIV-1 infection,” International Journal of Nanomedicine, vol. 16, pp. 1189–1206, 2021
[167] “Study to evaluate the safety of griffithsin in a carrageenan gel in healthy women clinicaltrials,” 2021, https://clinicaltrials. gov/ct2/show/study/NCT02875119.
[168] “Griffithsin-based rectal microbicide for PREvention of viral ENTry,” 2021, https://clinicaltrials.gov/ct2/show/ NCT04032717
[169] R. A. Collins, T. B. Ng, W. P. Fong, C. C. Wan, and H. W. Yeung, “A comparison of human immunodeficiency virus type 1 inhibition by partially purified aqueous extracts of Chinese medicinal herbs,” Life Sciences, vol. 60, no. 23, pp. Pl345–PL351, 1997.
[170] Q.-Z. Yao, M. M. Yu, L. S. M. Ooi et al., “Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (volvariella volvacea),” Journal of Agricultural and Food Chemistry, vol. 46, no. 2, pp. 788–792, 1998.
[171] T. Girbes, J. Ferreras, F. Arias, and F. Stirpe, “Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria,” Mini-Reviews in Medicinal Chemistry, vol. 4, no. 5, pp. 461–476, 2004
[172] S. A. Kidwai, A. A. Ansari, and A. Salahuddin, “Effect of succinylation (3-carboxypropionylation) on the conformation and immunological activity of ovalbumin,” Biochemical Journal, vol. 155, no. 1, pp. 171–180, 1976
[173] P.-C. Shaw, K.-M. Lee, and K.-B. Wong, “Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties,” Toxicon, vol. 45, no. 6, pp. 683–689, 2005
[174] M. S. McGrath, K. M. Hwang, S. E. Caldwell et al., “GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage,” Proceedings of the National Academy of Sciences, vol. 86, no. 8, pp. 2844–2848, 1989
[175] Y.-Y. Wang, D.-Y. Ouyang, H. Huang, H. Chan, S.-C. Tam, and Y.-T. Zheng, “Enhanced apoptotic action of trichosanthin in HIV-1 infected cells,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 1075–1080, 2005.
[176] W.-L. Zhao, D. Feng, J. Wu, and S.-F. Sui, “Trichosanthin inhibits integration of human immunodeficiency virus type 1 through depurinating the long-terminal repeats,” Molecular Biology Reports, vol. 37, no. 4, pp. 2093–2098, 2010.
[177] W. Zhao, D. Feng, S. Sun, T. Han, and S. Sui, “+e anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 2, pp. 91–97, 2010.
[178] V. Byers, A. Levin, L. Waites et al., “A phase I/II study of trichostathin treatment of HIV desease,” Current Science, vol. 4, no. 2, pp. 1189–1196, 1990.
[179] V. S. Byers, A. S. Levin, A. Malvino, L. Waites, R. A. Robins, and R. W. Baldwin, “A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents,” AIDS Research and Human Retroviruses, vol. 10, no. 4, pp. 413–420, 1994.
[180] J. O. Kahn, K. J. Gorelick, G. Gatti et al., “Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 2, pp. 260–267, 1994.
[181] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies,” Nature, vol. 347, no. 6288, pp. 92–95, 1990.
[182] J. M. Zarling, P. A. Moran, O. Haffar et al., “Inhibition of HIV-1 replication in seropositive patients’ CD4+ T-cells by pokeweed antiviral protein-monoclonal antibody conjugates,” International Journal of Immunopharmacology, vol. 13, no. 1, pp. 63–68, 1991.
[183] G. Krivdova and K. A. Hudak, “Pokeweed antiviral protein restores levels of cellular APOBEC3G during HIV-1 infection by depurinating Vif mRNA,” Antiviral Research, vol. 122, pp. 51–54, 2015.
[184] M. H. Pastrana Restrepo, S´ıntesis de derivados clorados y bromados de la l-tirosina y evaluacion in vitro de sus acti-´ vidades antiparasitarias, Universidad de Antioquia, Antioquia, Colombia, 2016.
[185] P. Ciminiello, C. Dell’Aversano, E. Fattorusso, S. Magno, L. Carrano, and M. Pansini, “Chemistry of Verongida sponges. VII bromocompounds from the caribbean sponge Aplysina archeri,” Tetrahedron, vol. 52, no. 29, pp. 9863–9868, 1996.
Repositorio UCC
Universidad Cooperativa de Colombia
instacron:Universidad Cooperativa de Colombia
Academic Journal
Iatreia. Jan-March, 2024, Vol. 37 Issue 1, p63, 22 p.
Academic Journal
Paula A. Velásquez-Bedoya; María I. Zapata-Cardona; Laura M. Monsalve-Escudero; Jaime A. Pereañez; Diego Guerra-Arias; Manuel Pastrana-Restrepo; Elkin Galeano; Wildeman Zapata-Builes
Molecules, Vol 30, Iss 7, p 1419 (2025)
Academic Journal
Daniel S. Rincón; Lizdany Flórez-Álvarez; Natalia A. Taborda; Juan C. Hernandez; María T. Rugeles; Wildeman Zapata-Builes
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Academic Journal
Maria S. Serna-Arbeláez; Valentina García-Cárcamo; Daniel S. Rincón-Tabares; Diego Guerra; Vanessa Loaiza-Cano; Marlen Martinez-Gutierrez; Jaime A. Pereañez; Manuel Pastrana-Restrepo; Elkin Galeano; Wildeman Zapata
Current Issues in Molecular Biology, Vol 45, Iss 10, Pp 8173-8200 (2023)
Academic Journal
Zapata, Wildeman; Rugeles, Maira T.; Yepes, Lina; Zapata, María I.; Florez, Lizdany; Aguilar Jimenez, Wbeimar; Oliveros, Cristian; Yepes-Perez, Andres; Herrera-Calderon, Oscar
Evid Based Complement Alternat Med
J. Harcourt, A. Tamin, X. Lu et al., “Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States,” Emerging Infectious Diseases, vol. 26, no. 6, pp. 1266–1273, 2020.
Y. Takeda, T. Murata, D. Jamsransuren et al., “Saxifraga spinulosa-derived components rapidly inactivate multiple viruses including SARS-CoV-2,” Viruses, vol. 12, no. 7, 699 pages, 2020.
World Health Organization (WHO), World Health Organization, “WHO coronavirus disease (COVID-19) dashboard,” 2020, https://covid19.who.int.
J. A. Poterico and O. Mestanza, “Genetic variants and source of introduction of SARS-CoV-2 in South America,” Journal of Medical Virology, vol. 92, no. 10, 2020.
C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, “Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges,” International Journal of Antimicrobial Agents, vol. 55, no. 3, Article ID 105924, 2020.
WHO, “WHO supports scientifically-proven traditional medicine no title,” 2020, https://www.afro.who.int/news/ who-supports-scientifically-proven-traditional-medicine.
L. Z. De Oliveira, I. L. G. Farias, M. L. Rigo et al., “Effect of Uncaria tomentosa extract on apoptosis triggered by oxaliplatin exposure on HT29 cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 274786, 10 pages, 2014.
M. E. Heitzman, C. C. Neto, E. Winiarz, A. J. Vaisberg, and G. B. Hammond, “Ethnobotany, phytochemistry and pharmacology of uncaria (Rubiaceae),” Phytochemistry, vol. 66, no. 1, pp. 5–29, 2005.
O. Lock, E. Perez, M. Villar, D. Flores, and R. Rojas, “Bioactive compounds from plants used in peruvian traditional medicine,” Natural Product Communications, vol. 11, no. 3, pp. 315–337, 2016.
S. R. I. N. Reis, L. M. M. Valente, A. L. Sampaio et al., “Immunomodulating and antiviral activities of uncaria tomentosa on human monocytes infected with dengue virus-2,” International Immunopharmacology, vol. 8, no. 3, pp. 468–476, 2008.
T. Caon, S. Kaiser, C. Feltrin et al., “Antimutagenic and antiherpetic activities of different preparations from uncaria tomentosa (cat’s claw),” Food and Chemical Toxicology, vol. 66, pp. 30–35, 2014.
A. F. Yepes-P´erez, O. Herrera-Calderon, J.-E. S´anchez-Aparicio et al., “Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling,” Evidence-Based Complementary and Alternative Medicine, vol. 2020, pp. 1–14, 2020.
A. F. Yepes-P´erez, O. Herrera-Calderon, and J. Quintero-Saumeth, “Uncaria tomentosa (cat’s claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARSCoV-2 spike protein based on molecular modeling,” Journal of Biomolecular Structure and Dynamics, vol. 117 pages, 2020.
M. Sandoval-Chac´on, J. H.-ompson, X. J. Zhang et al., “Antiinflammatory actions of cat’s claw: the role of NF-κB,” Alimentary Pharmacology & Eerapeutics, vol. 12, no. 12, pp. 1279–1289, 1998.
J. Kolodziejczyk-Czepas, M. Ponczek, M. Sady-Janczak, R. Pilarski, and B. Bukowska, “Extracts from Uncaria tomentosa as antiplatelet agents and thrombin inhibitors –the in vitro and in silico study,” Journal of Ethnopharmacology, vol. 267, Article ID 113494, 2020.
R. M. Lenzi, L. H. Campestrini, L. M. Okumura et al., “Effects of aqueous fractions of uncaria tomentosa (Willd.) D.C. on macrophage modulatory activities,” Food Research International, vol. 53, no. 2, pp. 767–779, 2013.
M. Navarro-Hoyos, R. Lebr´on-Aguilar, J. E. Quintanilla-L´opez et al., “Proanthocyanidin characterization and bioactivity of extracts from different parts of uncaria tomentosa L. (cat’s claw),” Antioxidants, vol. 6, no. 1, 2017.
F. Dietrich, S. Kaiser, L. Rockenbach et al., “Quinovic acid glycosides purified fraction from uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line,” Food and Chemical Toxicology, vol. 67, pp. 222–229, 2014.
R. Aquino, N. De Tommasi, F. De Simone, and C. Pizza, “Triterpenes and quinovic acid glycosides from uncaria tomentosa,” Phytochemistry, vol. 45, no. 5, pp. 1035–1040, 1997.
E. M. C. Peñaloza, S. Kaiser, P. E. De Resende et al., “Chemical composition variability in the uncaria tomentosa (cat’s claw) wild population,” Qu´ımica Nova, vol. 38, no. 3, pp. 378–386, 2015.
M. D. Sacco, C. Ma, P. Lagarias et al., “Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M pro and cathepsin L,” Science Advances, vol. 6, no. 50, 2020.
K. Takayama, “Vitro and animal models for SARS-CoV-2 research,” Trends in Pharmacological Sciences, vol. 41, no. 8, pp. 513–517, 2020.
M. K. Bohn, A. Hall, L. Sepiashvili et al., “Pathophysiology of COVID-19: mechanisms underlying disease severity and progression,” Physiology, vol. 35, no. 5, 2020.
A. O. Ferreira, H. C. Polonini, and E. C. F. Dijkers, “Postulated adjuvant therapeutic strategies for COVID-19,” Journal of Personalized Medicine, vol. 10, no. 3, p. 80, 2020.
F. J. D´ıaz, W. Aguilar-Jim´enez, L. Fl´orez-´ Alvarez et al., “Aislamiento y caracterizaci´on de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medell´ın, Colombia,” Biomedica, vol. 40, no. 2, pp. 148–158, 2020.
S. Xu and Y. Li, “Beware of the second wave of COVID-19,” Ee Lancet, vol. 395, pp. 1321-1322, Article ID 10233, 2020.
A. A. Rabaan, S. H. Al-Ahmed, R. Sah et al., “SARS-CoV-2/ COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic,” Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, p. 40, 2020.
L. Ni, L. Zhou, M. Zhou, J. Zhao, and D. W. Wang, “Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19,” Frontiers of Medicine, vol. 14, no. 2, pp. 210–214, 2020.
R. R. Narkhede, A. V. Pise, R. S. Cheke, and S. D. Shinde, “Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): in-silico evidences,” Natural Products and Bioprospecting, vol. 10, no. 5, pp. 297– 306, 2020.
X. Xiong, P. Wang, K. Su, W. C. Cho, and Y. Xing, “Chinese herbal medicine for coronavirus disease 2019: a systematic review and meta-analysis,” Pharmacological Research, vol. 160, Article ID 105056, 2020.
W. Dai, B. Zhang, X.-M. Jiang et al., “Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease,” Science, vol. 368, no. 6497, pp. 1331–1335, 2020.
N. S. Ogando, T. J. Dalebout, J. C. Zevenhoven-Dobbe et al., “SARS-coronavirus-2 replication in vero E6 cells: replication kinetics, rapid adaptation and cytopathology,” Journal of General Virology, vol. 101, no. 9, pp. 925–940, 2020.
L. Zhang, D. Lin, X. Sun et al., “Crystal structure of SARSCoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors,” Science, vol. 368, no. 6489, pp. 409–412, Apr. 2020.
C. Ma, M. D. Sacco, B. Hurst et al., “Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease,” Cell Research, vol. 30, no. 8, pp. 678–692, 2020.
R. Aquino, F. De Simone, C. Pizza, C. Conti, and M. L. Stein, “Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from uncaria tomentosa and guettarda platypoda,” Journal of Natural Products, vol. 61, no. 7, pp. 936–938, 1989.
J. Signer, H. R. Jonsdottir, W. C. Albrich et al., “In vitro virucidal activity of echinaforce®, an echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2,” Virology Journal, vol. 17, no. 1, 136 pages, 2020.
Q. Ma, W. Pan, R. Li et al., “Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway,” Pharmacological Research, vol. 158, Article ID 104850, 2020.
Q. Ma, R. Li, W. Pan et al., “Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway,” Phytomedicine, vol. 78, Article ID 153296, 2020.
P. S. Kwon, H. Oh, S.-J. Kwon et al., “Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro,” Cell Discovery, vol. 6, no. 1, p. 50, 2020.
A. I. Trujillo-Correa, D. C. Quintero-Gil, F. Diaz-Castillo et al., “In vitro and in silico anti-dengue activity of compounds obtained from psidium guajava through bioprospecting,” BMC Complementary and Alternative Medicine, vol. 19, no. 1, 298 pages, 2019.
T. Maruoka, A. Kitanaka, Y. Kubota et al., “Lemongrass essential oil and citral inhibit Src/Stat3 activity and suppress the proliferation/survival of small-cell lung cancer cells, alone or in combination with chemotherapeutic agents,” International Journal of Oncology, vol. 1, pp. 1738–1748, 2018.
S. Wichit, R. Hamel, E. Bernard et al., “Imipramine inhibits chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking,” Scientific Reports, vol. 7, 3145 pages, 2017.
F. Tabatabaei, M. Moezizadeh, and F. Javand, “Effects of extracts of Salvadora persica on proliferation and viability of human dental pulp stem cells,” Journal of Conservative Dentistry: JCD, vol. 18, no. 4, pp. 315–320, 2015.
R. Rojas-Duran, G. Gonz´alez-Aspajo, C. Ruiz-Martel et al., “Anti-inflammatory activity of mitraphylline isolated from uncaria tomentosa bark,” Journal of Ethnopharmacology, vol. 143, no. 3, pp. 801–804, 2012.
A. C. Cheng, C. B. Jian, Y. T. Huang et al., “Induction of apoptosis by uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells,” Food and Chemical Toxicology, vol. 45, no. 11, pp. 2206–2218, 2007.
R. S. Lima-Junior, C. Da Silva Mello, C. F. Kubelka, A. C. Siani, and L. M. M. Valente, “Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, il-8 and ns1 production on human microvascular endothelial cells infected with dengue virus,” Natural Product Communications, vol. 8, no. 11, pp. 1547–1550, 2013.
M. Sandoval, R. M. Charbonnet, N. N. Okuhama et al., “Cat’s claw inhibits TNFα production and scavenges free radicals: role in cytoprotection,” Free Radical Biology and Medicine, vol. 29, no. 1, pp. 71–78, 2000.
P. T. W. Law, C. H. Wong, T. C. C. Au et al., “-e 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in vero E6 cells,” Journal of General Virology, vol. 86, no. 7, pp. 1921–1930, 2005.
F. J. Cisneros, M. Jayo, and L. Niedziela, “An uncaria tomentosa (cat’s claw) extract protects mice against ozoneinduced lung inflammation,” Journal of Ethnopharmacology, vol. 96, no. 3, pp. 355–364, 2005.
L. Chen, J. Ma, X. Wang, and M. Zhang, “Simultaneous determination of six uncaria alkaloids in mouse blood by UPLC-MS/MS and its application in pharmacokinetics and bioavailability,” BioMed Research International, vol. 2020, Article ID 1030269, 11 pages, 2020.
G. E.-S. Batiha, A. Magdy Beshbishy, L. Wasef et al., “Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities,” Applied Sciences, vol. 10, no. 8, p. 2668, 2020.
Y. Sheng, “DNA repair enhancement of aqueous extracts of in a human volunteer study,” Phytomedicine, vol. 8, no. 4, pp. 275–282, 2001.
L. G. Valerio and G. F. Gonzales, “Toxicological aspects of the South American herbs cat’s claw (uncaria tomentosa) and maca (lepidium meyenii): a critical synopsis,” Toxicological Reviews, vol. 24, no. 1, 11 pages, 2005.
L. C. L. De Paula, F. Fonseca, F. Perazzo et al., “Uncaria tomentosa (cat’s claw) improves quality of life in patients with advanced solid tumors,” Journal of Alternative and Complementary Medicine, vol. 21, no. 1, pp. 22–30, 2015.
M. R. C. Schetinger, I. L. G. Farias, M. C. S. Ara´ujo et al., “Uncaria tomentosa for reducing side effects caused by chemotherapy in CRC patients: clinical trial,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 892182, 8 pages, 2012.
K. Keplinger, G. Laus, M. Wurm, M. P. Dierich, and H. Teppner, “Uncaria tomentosa (Willd.) DC.-ethnomedicinal use and new pharmacological, toxicological and botanical results,” Journal of Ethnopharmacology, vol. 64, no. 1, pp. 23–34, 1998.
Repositorio UCC
Universidad Cooperativa de Colombia
instacron:Universidad Cooperativa de Colombia
J. Harcourt, A. Tamin, X. Lu et al., “Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States,” Emerging Infectious Diseases, vol. 26, no. 6, pp. 1266–1273, 2020.
Y. Takeda, T. Murata, D. Jamsransuren et al., “Saxifraga spinulosa-derived components rapidly inactivate multiple viruses including SARS-CoV-2,” Viruses, vol. 12, no. 7, 699 pages, 2020.
World Health Organization (WHO), World Health Organization, “WHO coronavirus disease (COVID-19) dashboard,” 2020, https://covid19.who.int.
J. A. Poterico and O. Mestanza, “Genetic variants and source of introduction of SARS-CoV-2 in South America,” Journal of Medical Virology, vol. 92, no. 10, 2020.
C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, “Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges,” International Journal of Antimicrobial Agents, vol. 55, no. 3, Article ID 105924, 2020.
WHO, “WHO supports scientifically-proven traditional medicine no title,” 2020, https://www.afro.who.int/news/ who-supports-scientifically-proven-traditional-medicine.
L. Z. De Oliveira, I. L. G. Farias, M. L. Rigo et al., “Effect of Uncaria tomentosa extract on apoptosis triggered by oxaliplatin exposure on HT29 cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 274786, 10 pages, 2014.
M. E. Heitzman, C. C. Neto, E. Winiarz, A. J. Vaisberg, and G. B. Hammond, “Ethnobotany, phytochemistry and pharmacology of uncaria (Rubiaceae),” Phytochemistry, vol. 66, no. 1, pp. 5–29, 2005.
O. Lock, E. Perez, M. Villar, D. Flores, and R. Rojas, “Bioactive compounds from plants used in peruvian traditional medicine,” Natural Product Communications, vol. 11, no. 3, pp. 315–337, 2016.
S. R. I. N. Reis, L. M. M. Valente, A. L. Sampaio et al., “Immunomodulating and antiviral activities of uncaria tomentosa on human monocytes infected with dengue virus-2,” International Immunopharmacology, vol. 8, no. 3, pp. 468–476, 2008.
T. Caon, S. Kaiser, C. Feltrin et al., “Antimutagenic and antiherpetic activities of different preparations from uncaria tomentosa (cat’s claw),” Food and Chemical Toxicology, vol. 66, pp. 30–35, 2014.
A. F. Yepes-P´erez, O. Herrera-Calderon, J.-E. S´anchez-Aparicio et al., “Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling,” Evidence-Based Complementary and Alternative Medicine, vol. 2020, pp. 1–14, 2020.
A. F. Yepes-P´erez, O. Herrera-Calderon, and J. Quintero-Saumeth, “Uncaria tomentosa (cat’s claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARSCoV-2 spike protein based on molecular modeling,” Journal of Biomolecular Structure and Dynamics, vol. 117 pages, 2020.
M. Sandoval-Chac´on, J. H.-ompson, X. J. Zhang et al., “Antiinflammatory actions of cat’s claw: the role of NF-κB,” Alimentary Pharmacology & Eerapeutics, vol. 12, no. 12, pp. 1279–1289, 1998.
J. Kolodziejczyk-Czepas, M. Ponczek, M. Sady-Janczak, R. Pilarski, and B. Bukowska, “Extracts from Uncaria tomentosa as antiplatelet agents and thrombin inhibitors –the in vitro and in silico study,” Journal of Ethnopharmacology, vol. 267, Article ID 113494, 2020.
R. M. Lenzi, L. H. Campestrini, L. M. Okumura et al., “Effects of aqueous fractions of uncaria tomentosa (Willd.) D.C. on macrophage modulatory activities,” Food Research International, vol. 53, no. 2, pp. 767–779, 2013.
M. Navarro-Hoyos, R. Lebr´on-Aguilar, J. E. Quintanilla-L´opez et al., “Proanthocyanidin characterization and bioactivity of extracts from different parts of uncaria tomentosa L. (cat’s claw),” Antioxidants, vol. 6, no. 1, 2017.
F. Dietrich, S. Kaiser, L. Rockenbach et al., “Quinovic acid glycosides purified fraction from uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line,” Food and Chemical Toxicology, vol. 67, pp. 222–229, 2014.
R. Aquino, N. De Tommasi, F. De Simone, and C. Pizza, “Triterpenes and quinovic acid glycosides from uncaria tomentosa,” Phytochemistry, vol. 45, no. 5, pp. 1035–1040, 1997.
E. M. C. Peñaloza, S. Kaiser, P. E. De Resende et al., “Chemical composition variability in the uncaria tomentosa (cat’s claw) wild population,” Qu´ımica Nova, vol. 38, no. 3, pp. 378–386, 2015.
M. D. Sacco, C. Ma, P. Lagarias et al., “Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M pro and cathepsin L,” Science Advances, vol. 6, no. 50, 2020.
K. Takayama, “Vitro and animal models for SARS-CoV-2 research,” Trends in Pharmacological Sciences, vol. 41, no. 8, pp. 513–517, 2020.
M. K. Bohn, A. Hall, L. Sepiashvili et al., “Pathophysiology of COVID-19: mechanisms underlying disease severity and progression,” Physiology, vol. 35, no. 5, 2020.
A. O. Ferreira, H. C. Polonini, and E. C. F. Dijkers, “Postulated adjuvant therapeutic strategies for COVID-19,” Journal of Personalized Medicine, vol. 10, no. 3, p. 80, 2020.
F. J. D´ıaz, W. Aguilar-Jim´enez, L. Fl´orez-´ Alvarez et al., “Aislamiento y caracterizaci´on de una cepa temprana de SARS-CoV-2 durante la epidemia de 2020 en Medell´ın, Colombia,” Biomedica, vol. 40, no. 2, pp. 148–158, 2020.
S. Xu and Y. Li, “Beware of the second wave of COVID-19,” Ee Lancet, vol. 395, pp. 1321-1322, Article ID 10233, 2020.
A. A. Rabaan, S. H. Al-Ahmed, R. Sah et al., “SARS-CoV-2/ COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic,” Annals of Clinical Microbiology and Antimicrobials, vol. 19, no. 1, p. 40, 2020.
L. Ni, L. Zhou, M. Zhou, J. Zhao, and D. W. Wang, “Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19,” Frontiers of Medicine, vol. 14, no. 2, pp. 210–214, 2020.
R. R. Narkhede, A. V. Pise, R. S. Cheke, and S. D. Shinde, “Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): in-silico evidences,” Natural Products and Bioprospecting, vol. 10, no. 5, pp. 297– 306, 2020.
X. Xiong, P. Wang, K. Su, W. C. Cho, and Y. Xing, “Chinese herbal medicine for coronavirus disease 2019: a systematic review and meta-analysis,” Pharmacological Research, vol. 160, Article ID 105056, 2020.
W. Dai, B. Zhang, X.-M. Jiang et al., “Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease,” Science, vol. 368, no. 6497, pp. 1331–1335, 2020.
N. S. Ogando, T. J. Dalebout, J. C. Zevenhoven-Dobbe et al., “SARS-coronavirus-2 replication in vero E6 cells: replication kinetics, rapid adaptation and cytopathology,” Journal of General Virology, vol. 101, no. 9, pp. 925–940, 2020.
L. Zhang, D. Lin, X. Sun et al., “Crystal structure of SARSCoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors,” Science, vol. 368, no. 6489, pp. 409–412, Apr. 2020.
C. Ma, M. D. Sacco, B. Hurst et al., “Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease,” Cell Research, vol. 30, no. 8, pp. 678–692, 2020.
R. Aquino, F. De Simone, C. Pizza, C. Conti, and M. L. Stein, “Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from uncaria tomentosa and guettarda platypoda,” Journal of Natural Products, vol. 61, no. 7, pp. 936–938, 1989.
J. Signer, H. R. Jonsdottir, W. C. Albrich et al., “In vitro virucidal activity of echinaforce®, an echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2,” Virology Journal, vol. 17, no. 1, 136 pages, 2020.
Q. Ma, W. Pan, R. Li et al., “Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway,” Pharmacological Research, vol. 158, Article ID 104850, 2020.
Q. Ma, R. Li, W. Pan et al., “Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway,” Phytomedicine, vol. 78, Article ID 153296, 2020.
P. S. Kwon, H. Oh, S.-J. Kwon et al., “Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro,” Cell Discovery, vol. 6, no. 1, p. 50, 2020.
A. I. Trujillo-Correa, D. C. Quintero-Gil, F. Diaz-Castillo et al., “In vitro and in silico anti-dengue activity of compounds obtained from psidium guajava through bioprospecting,” BMC Complementary and Alternative Medicine, vol. 19, no. 1, 298 pages, 2019.
T. Maruoka, A. Kitanaka, Y. Kubota et al., “Lemongrass essential oil and citral inhibit Src/Stat3 activity and suppress the proliferation/survival of small-cell lung cancer cells, alone or in combination with chemotherapeutic agents,” International Journal of Oncology, vol. 1, pp. 1738–1748, 2018.
S. Wichit, R. Hamel, E. Bernard et al., “Imipramine inhibits chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking,” Scientific Reports, vol. 7, 3145 pages, 2017.
F. Tabatabaei, M. Moezizadeh, and F. Javand, “Effects of extracts of Salvadora persica on proliferation and viability of human dental pulp stem cells,” Journal of Conservative Dentistry: JCD, vol. 18, no. 4, pp. 315–320, 2015.
R. Rojas-Duran, G. Gonz´alez-Aspajo, C. Ruiz-Martel et al., “Anti-inflammatory activity of mitraphylline isolated from uncaria tomentosa bark,” Journal of Ethnopharmacology, vol. 143, no. 3, pp. 801–804, 2012.
A. C. Cheng, C. B. Jian, Y. T. Huang et al., “Induction of apoptosis by uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells,” Food and Chemical Toxicology, vol. 45, no. 11, pp. 2206–2218, 2007.
R. S. Lima-Junior, C. Da Silva Mello, C. F. Kubelka, A. C. Siani, and L. M. M. Valente, “Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, il-8 and ns1 production on human microvascular endothelial cells infected with dengue virus,” Natural Product Communications, vol. 8, no. 11, pp. 1547–1550, 2013.
M. Sandoval, R. M. Charbonnet, N. N. Okuhama et al., “Cat’s claw inhibits TNFα production and scavenges free radicals: role in cytoprotection,” Free Radical Biology and Medicine, vol. 29, no. 1, pp. 71–78, 2000.
P. T. W. Law, C. H. Wong, T. C. C. Au et al., “-e 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in vero E6 cells,” Journal of General Virology, vol. 86, no. 7, pp. 1921–1930, 2005.
F. J. Cisneros, M. Jayo, and L. Niedziela, “An uncaria tomentosa (cat’s claw) extract protects mice against ozoneinduced lung inflammation,” Journal of Ethnopharmacology, vol. 96, no. 3, pp. 355–364, 2005.
L. Chen, J. Ma, X. Wang, and M. Zhang, “Simultaneous determination of six uncaria alkaloids in mouse blood by UPLC-MS/MS and its application in pharmacokinetics and bioavailability,” BioMed Research International, vol. 2020, Article ID 1030269, 11 pages, 2020.
G. E.-S. Batiha, A. Magdy Beshbishy, L. Wasef et al., “Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities,” Applied Sciences, vol. 10, no. 8, p. 2668, 2020.
Y. Sheng, “DNA repair enhancement of aqueous extracts of in a human volunteer study,” Phytomedicine, vol. 8, no. 4, pp. 275–282, 2001.
L. G. Valerio and G. F. Gonzales, “Toxicological aspects of the South American herbs cat’s claw (uncaria tomentosa) and maca (lepidium meyenii): a critical synopsis,” Toxicological Reviews, vol. 24, no. 1, 11 pages, 2005.
L. C. L. De Paula, F. Fonseca, F. Perazzo et al., “Uncaria tomentosa (cat’s claw) improves quality of life in patients with advanced solid tumors,” Journal of Alternative and Complementary Medicine, vol. 21, no. 1, pp. 22–30, 2015.
M. R. C. Schetinger, I. L. G. Farias, M. C. S. Ara´ujo et al., “Uncaria tomentosa for reducing side effects caused by chemotherapy in CRC patients: clinical trial,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 892182, 8 pages, 2012.
K. Keplinger, G. Laus, M. Wurm, M. P. Dierich, and H. Teppner, “Uncaria tomentosa (Willd.) DC.-ethnomedicinal use and new pharmacological, toxicological and botanical results,” Journal of Ethnopharmacology, vol. 64, no. 1, pp. 23–34, 1998.
Repositorio UCC
Universidad Cooperativa de Colombia
instacron:Universidad Cooperativa de Colombia
In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: A drug repurposing approach
Academic Journal
Maria I. Zapata-Cardona; Lizdany Florez-Alvarez; Ariadna L. Guerra-Sandoval; Mateo Chvatal-Medina; Carlos M. Guerra-Almonacid; Jaime Hincapie-Garcia; Juan C. Hernandez; Maria T. Rugeles; Wildeman Zapata-Builes
AIMS Microbiology, Vol 9, Iss 1, Pp 20-40 (2023)
Academic Journal
Acosta-Ampudia, Yeny ; Monsalve, Diana M. ; Rojas, Manuel ; Rodríguez, Yhojan ; Gallo, Juan Esteban ; Salazar-Uribe, Juan Carlos ; Santander, María José ; Cala, Mónica P. ; Zapata, Wildeman ; Zapata, María Isabel ; Manrique, Rubén ; Pardo-Oviedo, Juan Mauricio ; Camacho, Bernardo ; Ramírez-Santana, Carolina ; Anaya, Juan-Manuel
In Journal of Autoimmunity March 2021 118
Academic Journal
Florez-Alvarez, Lizdany; Hernandez, Juan C.; Zapata, Wildeman; Jaramillo, Jose R.; Taborda, Natalia A.; Gonzalez, Juan D.; L. MartÃnez, Larry; Yassin, Lina M.
Iatreia. Jan-March, 2023, Vol. 36 Issue 1, p5, 11 p.
Academic Journal
Ossa-Giraldo, Ana Claudia; Correa, John Sebastián; Moreno, Cristhian Leonardo; Blanquiceth, Yurany; Flórez-Álvarez, Lizdany; Contreras-Ramírez, Katherin; Higuita-Gutiérrez, Luis Felipe; Hernández, Juan Carlos; Zapata, Wildeman; Universidad Cooperativa de Colombia; Universidad de Antioquia
Adebajo, S., Obianwu, O., Eluwa, G., Vu, L., Oginni, A., Tun, W.,… Karlyn, A. (2014). Comparación de los métodos de entrevista personal y de autoentrevista asistida por computadora para determinar los riesgos relacionados con el VIH entre hombres que tienen relaciones sexuales con hombres y hombres que se inyectan drogas en Nigeria. PLoS ONE, 9 (1), e81981. https://bbibliograficas.ucc.edu.co:2160/10.1371/journal.pone.0081981 .
Aghaizu, A., Wayal, S., Nardone, A., Parsons, V., Copas, A., Mercey, D.,… Johnson, AM (2016). Comportamientos sexuales, pruebas del VIH y proporción de hombres en riesgo de transmitir y adquirir el VIH en Londres, Reino Unido, 2000-13: un estudio transversal en serie. Lancet HIV, 3 (9), e431 – e440. https://bbibliograficas.ucc.edu.co:2160/10.1016/S2352-3018(16)30037-6 .
Alvarado, B., Mueses, HF, Galindo, J. y Martínez-Cajas, JL (2020). Aplicación de la teoría de las “sindemias” para explicar el sexo sin protección y el sexo transaccional: un estudio transversal en hombres que tienen sexo con hombres (HSH), mujeres transgénero y no HSH en Colombia [Aplicación de la teoría de la “sindemia” para entender el sexo sin protección y el sexo comercial: un estudio transversal en hombres que tienen sexo con hombres (HSH), mujeres transexuales y hombres que no tienen sexo con hombres en Colombia]. Biomedica: Revista del Instituto Nacional de Salud, 40 (2), 391–403. https://bbibliograficas.ucc.edu.co:2160/10.7705/biomedica.5082 .
Ashenhurst, JR, Wilhite, ER, Harden, KP y Fromme, K. (2017). El número de parejas sexuales y el estado civil están asociados con las relaciones sexuales sin protección durante la adultez emergente. Archives of Sexual Behavior, 46 (2), 419–432. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10508-016-0692-8 .
Baral, S., Trapence, G., Motimedi, F., Umar, E., Iipinge, S., Dausab, F. y Beyrer, C. (2009). Prevalencia del VIH, riesgos de infección por el VIH y derechos humanos entre los hombres que tienen sexo con hombres (HSH) en Malawi, Namibia y Botswana. PLoS ONE, 4 (3), e4997. https://bbibliograficas.ucc.edu.co:2160/10.1371/journal.pone.0004997 .
Barros, AB, Dias, SF y Martins, MR (2015). Poblaciones de hombres que tienen sexo con hombres y trabajadores sexuales de difícil acceso: una revisión sistemática de los métodos de muestreo. Revisiones sistemáticas, 4, 141. https://bbibliograficas.ucc.edu.co:2160/10.1186/s13643-015-0129-9 .
Berbersi Fernández, DY, Segura Cardona, A., Marinez Rocha, A., Molina Estrada, A., Ramos Jaraba, SM, Bedoya Mejía, Sebastian. (2019). Comportamiento sexual y prevalencia de VIH en hombres que tienen relaciones sexuales con hombres en tres ciudades de Colombia: Bogotá, Medellín y Santiago de Cali, 2019 (1a ed.). Bogotá, DC .; Medellín: ENTerritorio-Empresa Nacional Promotora del Desarrollo Territorial; Universidad CES
Beyrer, C., Baral, SD, Collins, C., Richardson, ET, Sullivan, PS, Sánchez, J.,… Mayer, KH (2016). La respuesta global al VIH en hombres que tienen sexo con hombres. Lancet, 388 (10040), 198–206. https://bbibliograficas.ucc.edu.co:2160/10.1016/S0140-6736(16)30781-4 .
Beyrer, C., Baral, SD, van Griensven, F., Goodreau, SM, Chariyalertsak, S., Wirtz, AL y Brookmeyer, R. (2012). Epidemiología global de la infección por VIH en hombres que tienen sexo con hombres. Lancet, 380 (9839), 367–377. https://bbibliograficas.ucc.edu.co:2160/10.1016/S0140-6736(12)60821-6 .
Centros para el Control y la Prevención de Enfermedades (CDC). (2019, noviembre). Sexo anal y riesgo de VIH . División de Prevención del VIH / SIDA, Centro Nacional de Prevención del VIH / SIDA, Hepatitis Virales, ETS y TB, CDC. Obtenido el 15 de enero de 2020 de https://www.cdc.gov/hiv/risk/analsex.html
Cheng, W., Tang, W., Zhong, F., Babu, GR, Han, Z., Qin, F.,… Wang, M. (2014). Coito anal sin protección (AUI) constantemente alto y factores correlacionados con AUI entre hombres que tienen sexo con hombres: Implicación de un estudio transversal en serie en Guangzhou, China. Enfermedades Infecciosas de BMC, 14, 696. https://bbibliograficas.ucc.edu.co:2160/10.1186/s12879-014-0696-8 .
Colombia Diversa y Caribe Afirmativo. (2018). La discriminación, una guerra que no termina. Informe de derechos humanos de personas lesbianas, gays, bisexuales y trans. Colombia 2017 . Colombia Diversa y Caribe Afirmativo. Obtenido el 15 de enero de 2020 de https://colombiadiversa.org/colombiadiversa2016/wp-content/uploads/2018/07/A-0450_OS_baja-Informe-DDH.pdf
Dyer, TP, Regan, R., Pacek, LR, Acheampong, A. y Khan, MR (2015). Vulnerabilidad psicosocial y riesgo sexual relacionado con el VIH entre hombres que tienen sexo con hombres y mujeres en los Estados Unidos. Archives of Sexual Behavior, 44 (2), 429–441. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10508-014-0346-7 .
Eisinger, RW, Dieffenbach, CW y Fauci, AS (2019). Carga viral del VIH y transmisibilidad de la infección por el VIH: Indetectable es igual a intransmisible. Revista de la Asociación Médica Estadounidense, 321 (5), 451–452. https://bbibliograficas.ucc.edu.co:2160/10.1001/jama.2018.21167 .
Gama, A., Martins, MO y Dias, S. (2017). Investigación del VIH con hombres que tienen sexo con hombres (HSH): ventajas y desafíos de los diferentes métodos para dirigirse de manera más adecuada a una población clave. AIMS Public Health, 4 (3), 221–239. https://bbibliograficas.ucc.edu.co:2160/10.3934/publichealth.2017.3.221 .
García, PJ, Bayer, A. y Cárcamo, CP (2014). El rostro cambiante del VIH en América Latina y el Caribe. Informes actuales sobre el VIH / SIDA, 11 (2), 146-157. https://bbibliograficas.ucc.edu.co:2160/10.1007/s11904-014-0204-1 .
Harrison, A., Colvin, CJ, Kuo, C., Swartz, A. y Lurie, M. (2015). Alta incidencia sostenida del VIH en mujeres jóvenes en África austral: factores sociales, conductuales y estructurales y enfoques de intervención emergentes. Informes actuales sobre el VIH / SIDA, 12 (2), 207–215. https://bbibliograficas.ucc.edu.co:2160/10.1007/s11904-015-0261-0 .
Hicks, MR, Kogan, SM, Cho, J. y Oshri, A. (2017). Uso del condón en el contexto de concurrencia de pareja principal y casual: predictores individuales y de relación en una muestra de hombres afroamericanos heterosexuales. American Journal of Men's Health, 11 (3), 585–591. https://bbibliograficas.ucc.edu.co:2160/10.1177/1557988316649927 .
Coordinación de la red de VIH / SIDA y socios comunitarios. (2014). Recomendaciones para la participación de la comunidad en la investigación del VIH / SIDA . Institutos Nacionales de Salud (NIH), Instituto Nacional de Alergias y Enfermedades Infecciosas. Obtenido el 15 de enero de 2020 de https://www.hanc.info/cp/resources/Documents/Recommendations%202014%20FINAL%206-5-14%20rc.pdf .
Holland, AC y Kensinger, EA (2010). Emoción y memoria autobiográfica. Revisiones de la física de la vida, 7 (1), 88-131. https://bbibliograficas.ucc.edu.co:2160/10.1016/j.plrev.2010.01.006 .
Igulot, P. y Magadi, MA (2018). Situación socioeconómica y vulnerabilidad a la infección por el VIH en Uganda: evidencia de modelos multinivel de datos de encuestas de indicadores del SIDA. Investigación y tratamiento del SIDA, 7812146. https://bbibliograficas.ucc.edu.co:2160/10.1155/2018/7812146 .
Instituto Nacional de Salud (INS). (2018). Informe de evento VIH / SIDA Colombia 2017 . EN S. Recuperado el 15 de enero de 2020 de https://www.ins.gov.co/buscador-eventos/Informesdeevento/VIH-SIDA 2017.pdf
Instituto Nacional de Salud (INS). (2019). BTS-Boletín de Seguridad Transfusional-Notificación de tres casos de infección trasmitida por transfusión (ITT)-virus de inmunodeficiencia humana (VIH) . Recuperado el 15 de enero de 2020 de https://www.ins.gov.co/Direcciones/RedesSaludPublica/DonacionSangre/Publicaciones/INSTITUTO-NACIONAL-SALUD-INS-BOLETIN-TRANSFUSIONAL-NOTIFICACION-CASOS-INFECCION-TRANSFUSIÓN (003) .pdf
Kelley, CF, Rosenberg, ES, O'Hara, BM, Frew, PM, Sánchez, T., Peterson, JL,… Sullivan, PS (2012). Medición del riesgo de transmisión del VIH en la población: una métrica alternativa del riesgo de exposición en hombres que tienen sexo con hombres (HSH) en los EE. UU. PLoS ONE, 7 (12), e53284. https://bbibliograficas.ucc.edu.co:2160/10.1371/journal.pone.0053284 .
Klein, H. (2014). Riesgo de depresión y VIH entre hombres que tienen relaciones sexuales con otros hombres (HSH) y que utilizan Internet para encontrar parejas para tener relaciones sexuales sin protección. Journal of Gay & Lesbian Mental Health, 18 (2), 164–189. https://bbibliograficas.ucc.edu.co:2160/10.1080/19359705.2013.834858 .
Koblin, BA, Husnik, MJ, Colfax, G., Huang, Y., Madison, M., Mayer, K.,… Buchbinder, S. (2006). Factores de riesgo de infección por VIH entre hombres que tienen relaciones sexuales con hombres. AIDS, 20 (5), 731–739. https://bbibliograficas.ucc.edu.co:2160/10.1097/01.aids.0000216374.61442.55 .
Kong, TS, Laidler, KJ y Pang, H. (2012). Tipo de relación, uso de condones y riesgos de VIH / SIDA entre hombres que tienen sexo con hombres en seis ciudades chinas. AIDS Care, 24 (4), 517–528. https://bbibliograficas.ucc.edu.co:2160/10.1080/09540121.2011.617411 .
Lolich, M. y Azzollini, S. (2017). Estilos fenomenológicos de evocación de recuerdos autobiográficos en individuos con depresión mayor. Revista de Psicología, 35 (1), 125–166. https://bbibliograficas.ucc.edu.co:2160/10.18800/psico.201701.005 .
López Solano, H. (2017). El movimiento LGBT en Colombia: la construcción del derecho desde abajo . Universidad Santo Tomás. Obtenido el 15 de febrero de 2020 de https://repository.usta.edu.co/bitstream/handle/11634/3942/Lopezhernan2017.pdf?sequence=1&isAllowed=y
McKinnon, LR, Gakii, G., Juno, JA, Izulla, P., Munyao, J., Ireri, N.,… Kimani, J. (2014). Alto riesgo de VIH en una cohorte de trabajadores sexuales masculinos de Nairobi, Kenia. Infecciones de transmisión sexual, 90 (3), 237–242. https://bbibliograficas.ucc.edu.co:2160/10.1136/sextrans-2013-051310 .
Mercer, CH (2010, octubre). Medir el comportamiento sexual y el riesgo . University College London, Banco de preguntas de encuestas. Obtenido el 15 de febrero de 2020 de https://ukdataservice.ac.uk/media/262883/discover_sqb_sex_mercer.pdf .
Mitchell, K., Wellings, K., Elam, G., Erens, B., Fenton, K. y Johnson, A. (2007). ¿Cómo podemos facilitar informes fiables en encuestas sobre comportamiento sexual? Evidencia de investigación cualitativa. Cultura, salud y sexualidad, 9 (5), 519–531. https://bbibliograficas.ucc.edu.co:2160/10.1080/13691050701432561 .
Mustanski, B., Garofalo, R., Herrick, A. y Donenberg, G. (2007). Los problemas de salud psicosocial aumentan el riesgo de contraer el VIH entre los hombres jóvenes urbanos que tienen sexo con hombres: evidencia preliminar de una sindemia que necesita atención. Annals of Behavioral Medicine, 34 (1), 37–45. https://bbibliograficas.ucc.edu.co:2160/10.1007/BF02879919 .
Patel, P., Borkowf, CB, Brooks, JT, Lasry, A., Lansky, A. y Mermin, J. (2014). Estimación del riesgo de transmisión del VIH por acto: una revisión sistemática. AIDS, 28 (10), 1509-1519. https://bbibliograficas.ucc.edu.co:2160/10.1097/QAD.0000000000000298 .
Pellowski, JA, Kalichman, SC, Matthews, KA y Adler, N. (2013). Una pandemia de pobres: desventaja social y epidemia de VIH. Psicólogo estadounidense, 68 (4), 197-209. https://bbibliograficas.ucc.edu.co:2160/10.1037/a0032694 . Artículo Google Scholar
Pines, HA, Gorbach, PM, Weiss, RE, Reback, CJ, Landovitz, RJ, Mutchler, MG y Mitsuyasu, RT (2016). Predictores a nivel individual, de pareja y de eventos sexuales del uso de condones durante el coito anal receptivo entre hombres VIH negativos que tienen relaciones sexuales con hombres en Los Ángeles. AIDS and Behavior, 20 (6), 1315-1326. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10461-015-1218-4 .
Quevedo-Gómez, MC, Krumeich, A., Abadía-Barrero, CE, Pastrana-Salcedo, EM y van den Borne, H. (2011). Prevención de acciones estructurales en Cartagena, Colombia: un estudio cualitativo. Revista Panamericana de Revista Panamericana de Salud Pública, 30 (1), 65–73.
Rhodes, SD y Wong, año fiscal (2016). Prevención del VIH entre diversos HSH jóvenes: necesidades, prioridades y oportunidades de investigación. Educación y prevención del SIDA, 28 (3), 191–201. https://bbibliograficas.ucc.edu.co:2160/10.1521/aeap.2016.28.3.191 .
Rubio Mendoza, ML, Jacobson, JO, Morales-Miranda, S., Sierra Alarcón, C. Á. Y Luque Núñez, R. (2015). Alta carga de VIH en hombres que tienen sexo con hombres en las ciudades más grandes de Colombia: Hallazgos de un estudio integrado de vigilancia biológica y conductual. PLoS ONE, 10 (8), e0131040. https://bbibliograficas.ucc.edu.co:2160/10.1371/journal.pone.0131040 .
andfort, T., Yi, H., Knox, J. y Reddy, V. (2013). Tipos de parejas sexuales como determinantes del riesgo de VIH en HSH sudafricanos: un análisis de conglomerados a nivel de eventos. AIDS and Behavior, 17 (Suplemento 1), S23-S32. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10461-012-0294-y
Sapsirisavat, V., Phanuphak, N., Keadpudsa, S., Egan, JE, Pussadee, K., Klaytong, P.,… Equipo de estudio de FE. (2016). Características psicosociales y de comportamiento de hombres de alto riesgo que tienen sexo con hombres (HSH) de estado serológico VIH positivo desconocido en Bangkok, Tailandia. AIDS and Behavior, 20 (Suplemento 3), 386–397. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10461-016-1519-2 .
Shao, Y. y Williamson, C. (2012). La epidemia del VIH-1: países de ingresos bajos a medianos. Perspectivas de Cold Spring Harbor en Medicina, 2 (3), a007187. https://bbibliograficas.ucc.edu.co:2160/10.1101/cshperspect.a007187 .
SinViolencia LGBTI-Red Regional de Información sobre Violencias LGBTI en América Latina y el Caribe. (2019). El prejuicio no conoce fronteras Homicidios de lesbianas, gays, bisexuales, trans en los Países de América Latina y el Caribe 2014-2019 . Colombia Diversa https://colombiadiversa.org/colombiadiversa2016/wp-content/uploads/2019/08/Informe_Prejuicios_web.pdf
Stahlman, S., Hargreaves, JR, Sprague, L., Stangl, AL y Baral, SD (2017). Medir el estigma de la conducta sexual para informar sobre programas eficaces de prevención y tratamiento del VIH para poblaciones clave. Vigilancia y salud pública de la JMIR, 3 (2), e23. https://bbibliograficas.ucc.edu.co:2160/10.2196/publichealth.7334 .
Sullivan, PS, Carballo-Diéguez, A., Coates, T., Goodreau, SM, McGowan, I., Sanders, EJ,… Sánchez, J. (2012). Éxitos y desafíos de la prevención del VIH en hombres que tienen sexo con hombres. Lancet, 380 (9839), 388–399. https://bbibliograficas.ucc.edu.co:2160/10.1016/S0140-6736(12)60955-6 .
Tamayo-Zuluaga, B., Macías-Gil, Y., Cabrera-Orrego, R., Henao-Pelaéz, JN y Cardona-Arias, JA (2015). Estigma social en la atención de personas con VIH / sida por estudiantes y profesionales de las áreas de la salud, Medellín. Ciencias de La Salud, 13 (1), 9-23. https://bbibliograficas.ucc.edu.co:2160/10.12804/revsalud13.01.2015.01 .
ONUSIDA. (2010). Prevención combinada del VIH: Adaptación y coordinación de estrategias biomédicas, conductuales y estructurales para reducir las nuevas infecciones por el VIH . Obtenido el 15 de febrero de 2020 de https://www.unaids.org/sites/default/files/media_asset/JC2007_Combination_Prevention_paper_en_0.pdf
ONUSIDA. (2015). Rápido-el seguimiento de la prevención combinada . https://www.unaids.org/sites/default/files/media_asset/20151019_JC2766_Fast-tracking_combination_prevention.pdf
ONUSIDA. (2017a). PUNTO CIEGO: Llegar a hombres y niños Abordar un punto ciego en la respuesta al VIH . Obtenido el 15 de febrero de 2020 de http://www.unaids.org/sites/default/files/media_asset/blind_spot_en.pdf
ONUSIDA. (2017b). Datos de ONUSIDA 2017 . Obtenido el 15 de febrero de 2020 de http://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf
ONUSIDA. (2018). Atlas de poblaciones clave . Consultado el 15 de febrero de 2020 en http://www.aidsinfoonline.org/kpatlas/#/home
NUSIDA. (2019). Datos de ONUSIDA 2019 . Obtenido el 15 de febrero de 2020 de https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf
Vagenas, P., Brown, SE, Clark, JL, Konda, KA, Lama, JR, Sánchez, J.,… Altice, FL (2017). Una evaluación cualitativa del consumo de alcohol y las conductas sexuales de riesgo entre hombres que tienen sexo con hombres y mujeres transgénero en Perú. Uso y abuso de sustancias, 52 (7), 831–839. https://bbibliograficas.ucc.edu.co:2160/10.1080/10826084.2016.1264968 .
OMS: Organización Mundial de la Salud, Centros para el Control y la Prevención de Enfermedades (CDC), ONUSIDA y FHI 360. (2017). Directrices para encuestas bioconductuales para poblaciones en riesgo de contraer el VIH . Obtenido el 15 de febrero de 2020 de https://apps.who.int/iris/bitstream/handle/10665/258924/9789241513012-eng.pdf?sequence=1&ua=1
Wilson, PA, Nanin, J., Amesty, S., Wallace, S., Cherenack, EM y Fullilove, R. (2014). Uso de la teoría sinémica para comprender la vulnerabilidad a la infección por VIH entre hombres negros y latinos en la ciudad de Nueva York. Journal of Urban Health, 91 (5), 983–998. https://bbibliograficas.ucc.edu.co:2160/10.1007/s11524-014-9895-2 .
Xia, Q., Lazar, R., Bernard, MA, McNamee, P., Daskalakis, DC, Torian, LV y Braunstein, SL (2016). La ciudad de Nueva York alcanza los objetivos 90-90-90 de ONUSIDA para los blancos infectados por el VIH, pero no para los latinos, hispanos y negros. Revista de síndromes de inmunodeficiencia adquirida, 73 (3), e59 – e62. https://bbibliograficas.ucc.edu.co:2160/10.1097/QAI.0000000000001132 .
Repositorio UCC
Universidad Cooperativa de Colombia
instacron:Universidad Cooperativa de Colombia
Aghaizu, A., Wayal, S., Nardone, A., Parsons, V., Copas, A., Mercey, D.,… Johnson, AM (2016). Comportamientos sexuales, pruebas del VIH y proporción de hombres en riesgo de transmitir y adquirir el VIH en Londres, Reino Unido, 2000-13: un estudio transversal en serie. Lancet HIV, 3 (9), e431 – e440. https://bbibliograficas.ucc.edu.co:2160/10.1016/S2352-3018(16)30037-6 .
Alvarado, B., Mueses, HF, Galindo, J. y Martínez-Cajas, JL (2020). Aplicación de la teoría de las “sindemias” para explicar el sexo sin protección y el sexo transaccional: un estudio transversal en hombres que tienen sexo con hombres (HSH), mujeres transgénero y no HSH en Colombia [Aplicación de la teoría de la “sindemia” para entender el sexo sin protección y el sexo comercial: un estudio transversal en hombres que tienen sexo con hombres (HSH), mujeres transexuales y hombres que no tienen sexo con hombres en Colombia]. Biomedica: Revista del Instituto Nacional de Salud, 40 (2), 391–403. https://bbibliograficas.ucc.edu.co:2160/10.7705/biomedica.5082 .
Ashenhurst, JR, Wilhite, ER, Harden, KP y Fromme, K. (2017). El número de parejas sexuales y el estado civil están asociados con las relaciones sexuales sin protección durante la adultez emergente. Archives of Sexual Behavior, 46 (2), 419–432. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10508-016-0692-8 .
Baral, S., Trapence, G., Motimedi, F., Umar, E., Iipinge, S., Dausab, F. y Beyrer, C. (2009). Prevalencia del VIH, riesgos de infección por el VIH y derechos humanos entre los hombres que tienen sexo con hombres (HSH) en Malawi, Namibia y Botswana. PLoS ONE, 4 (3), e4997. https://bbibliograficas.ucc.edu.co:2160/10.1371/journal.pone.0004997 .
Barros, AB, Dias, SF y Martins, MR (2015). Poblaciones de hombres que tienen sexo con hombres y trabajadores sexuales de difícil acceso: una revisión sistemática de los métodos de muestreo. Revisiones sistemáticas, 4, 141. https://bbibliograficas.ucc.edu.co:2160/10.1186/s13643-015-0129-9 .
Berbersi Fernández, DY, Segura Cardona, A., Marinez Rocha, A., Molina Estrada, A., Ramos Jaraba, SM, Bedoya Mejía, Sebastian. (2019). Comportamiento sexual y prevalencia de VIH en hombres que tienen relaciones sexuales con hombres en tres ciudades de Colombia: Bogotá, Medellín y Santiago de Cali, 2019 (1a ed.). Bogotá, DC .; Medellín: ENTerritorio-Empresa Nacional Promotora del Desarrollo Territorial; Universidad CES
Beyrer, C., Baral, SD, Collins, C., Richardson, ET, Sullivan, PS, Sánchez, J.,… Mayer, KH (2016). La respuesta global al VIH en hombres que tienen sexo con hombres. Lancet, 388 (10040), 198–206. https://bbibliograficas.ucc.edu.co:2160/10.1016/S0140-6736(16)30781-4 .
Beyrer, C., Baral, SD, van Griensven, F., Goodreau, SM, Chariyalertsak, S., Wirtz, AL y Brookmeyer, R. (2012). Epidemiología global de la infección por VIH en hombres que tienen sexo con hombres. Lancet, 380 (9839), 367–377. https://bbibliograficas.ucc.edu.co:2160/10.1016/S0140-6736(12)60821-6 .
Centros para el Control y la Prevención de Enfermedades (CDC). (2019, noviembre). Sexo anal y riesgo de VIH . División de Prevención del VIH / SIDA, Centro Nacional de Prevención del VIH / SIDA, Hepatitis Virales, ETS y TB, CDC. Obtenido el 15 de enero de 2020 de https://www.cdc.gov/hiv/risk/analsex.html
Cheng, W., Tang, W., Zhong, F., Babu, GR, Han, Z., Qin, F.,… Wang, M. (2014). Coito anal sin protección (AUI) constantemente alto y factores correlacionados con AUI entre hombres que tienen sexo con hombres: Implicación de un estudio transversal en serie en Guangzhou, China. Enfermedades Infecciosas de BMC, 14, 696. https://bbibliograficas.ucc.edu.co:2160/10.1186/s12879-014-0696-8 .
Colombia Diversa y Caribe Afirmativo. (2018). La discriminación, una guerra que no termina. Informe de derechos humanos de personas lesbianas, gays, bisexuales y trans. Colombia 2017 . Colombia Diversa y Caribe Afirmativo. Obtenido el 15 de enero de 2020 de https://colombiadiversa.org/colombiadiversa2016/wp-content/uploads/2018/07/A-0450_OS_baja-Informe-DDH.pdf
Dyer, TP, Regan, R., Pacek, LR, Acheampong, A. y Khan, MR (2015). Vulnerabilidad psicosocial y riesgo sexual relacionado con el VIH entre hombres que tienen sexo con hombres y mujeres en los Estados Unidos. Archives of Sexual Behavior, 44 (2), 429–441. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10508-014-0346-7 .
Eisinger, RW, Dieffenbach, CW y Fauci, AS (2019). Carga viral del VIH y transmisibilidad de la infección por el VIH: Indetectable es igual a intransmisible. Revista de la Asociación Médica Estadounidense, 321 (5), 451–452. https://bbibliograficas.ucc.edu.co:2160/10.1001/jama.2018.21167 .
Gama, A., Martins, MO y Dias, S. (2017). Investigación del VIH con hombres que tienen sexo con hombres (HSH): ventajas y desafíos de los diferentes métodos para dirigirse de manera más adecuada a una población clave. AIMS Public Health, 4 (3), 221–239. https://bbibliograficas.ucc.edu.co:2160/10.3934/publichealth.2017.3.221 .
García, PJ, Bayer, A. y Cárcamo, CP (2014). El rostro cambiante del VIH en América Latina y el Caribe. Informes actuales sobre el VIH / SIDA, 11 (2), 146-157. https://bbibliograficas.ucc.edu.co:2160/10.1007/s11904-014-0204-1 .
Harrison, A., Colvin, CJ, Kuo, C., Swartz, A. y Lurie, M. (2015). Alta incidencia sostenida del VIH en mujeres jóvenes en África austral: factores sociales, conductuales y estructurales y enfoques de intervención emergentes. Informes actuales sobre el VIH / SIDA, 12 (2), 207–215. https://bbibliograficas.ucc.edu.co:2160/10.1007/s11904-015-0261-0 .
Hicks, MR, Kogan, SM, Cho, J. y Oshri, A. (2017). Uso del condón en el contexto de concurrencia de pareja principal y casual: predictores individuales y de relación en una muestra de hombres afroamericanos heterosexuales. American Journal of Men's Health, 11 (3), 585–591. https://bbibliograficas.ucc.edu.co:2160/10.1177/1557988316649927 .
Coordinación de la red de VIH / SIDA y socios comunitarios. (2014). Recomendaciones para la participación de la comunidad en la investigación del VIH / SIDA . Institutos Nacionales de Salud (NIH), Instituto Nacional de Alergias y Enfermedades Infecciosas. Obtenido el 15 de enero de 2020 de https://www.hanc.info/cp/resources/Documents/Recommendations%202014%20FINAL%206-5-14%20rc.pdf .
Holland, AC y Kensinger, EA (2010). Emoción y memoria autobiográfica. Revisiones de la física de la vida, 7 (1), 88-131. https://bbibliograficas.ucc.edu.co:2160/10.1016/j.plrev.2010.01.006 .
Igulot, P. y Magadi, MA (2018). Situación socioeconómica y vulnerabilidad a la infección por el VIH en Uganda: evidencia de modelos multinivel de datos de encuestas de indicadores del SIDA. Investigación y tratamiento del SIDA, 7812146. https://bbibliograficas.ucc.edu.co:2160/10.1155/2018/7812146 .
Instituto Nacional de Salud (INS). (2018). Informe de evento VIH / SIDA Colombia 2017 . EN S. Recuperado el 15 de enero de 2020 de https://www.ins.gov.co/buscador-eventos/Informesdeevento/VIH-SIDA 2017.pdf
Instituto Nacional de Salud (INS). (2019). BTS-Boletín de Seguridad Transfusional-Notificación de tres casos de infección trasmitida por transfusión (ITT)-virus de inmunodeficiencia humana (VIH) . Recuperado el 15 de enero de 2020 de https://www.ins.gov.co/Direcciones/RedesSaludPublica/DonacionSangre/Publicaciones/INSTITUTO-NACIONAL-SALUD-INS-BOLETIN-TRANSFUSIONAL-NOTIFICACION-CASOS-INFECCION-TRANSFUSIÓN (003) .pdf
Kelley, CF, Rosenberg, ES, O'Hara, BM, Frew, PM, Sánchez, T., Peterson, JL,… Sullivan, PS (2012). Medición del riesgo de transmisión del VIH en la población: una métrica alternativa del riesgo de exposición en hombres que tienen sexo con hombres (HSH) en los EE. UU. PLoS ONE, 7 (12), e53284. https://bbibliograficas.ucc.edu.co:2160/10.1371/journal.pone.0053284 .
Klein, H. (2014). Riesgo de depresión y VIH entre hombres que tienen relaciones sexuales con otros hombres (HSH) y que utilizan Internet para encontrar parejas para tener relaciones sexuales sin protección. Journal of Gay & Lesbian Mental Health, 18 (2), 164–189. https://bbibliograficas.ucc.edu.co:2160/10.1080/19359705.2013.834858 .
Koblin, BA, Husnik, MJ, Colfax, G., Huang, Y., Madison, M., Mayer, K.,… Buchbinder, S. (2006). Factores de riesgo de infección por VIH entre hombres que tienen relaciones sexuales con hombres. AIDS, 20 (5), 731–739. https://bbibliograficas.ucc.edu.co:2160/10.1097/01.aids.0000216374.61442.55 .
Kong, TS, Laidler, KJ y Pang, H. (2012). Tipo de relación, uso de condones y riesgos de VIH / SIDA entre hombres que tienen sexo con hombres en seis ciudades chinas. AIDS Care, 24 (4), 517–528. https://bbibliograficas.ucc.edu.co:2160/10.1080/09540121.2011.617411 .
Lolich, M. y Azzollini, S. (2017). Estilos fenomenológicos de evocación de recuerdos autobiográficos en individuos con depresión mayor. Revista de Psicología, 35 (1), 125–166. https://bbibliograficas.ucc.edu.co:2160/10.18800/psico.201701.005 .
López Solano, H. (2017). El movimiento LGBT en Colombia: la construcción del derecho desde abajo . Universidad Santo Tomás. Obtenido el 15 de febrero de 2020 de https://repository.usta.edu.co/bitstream/handle/11634/3942/Lopezhernan2017.pdf?sequence=1&isAllowed=y
McKinnon, LR, Gakii, G., Juno, JA, Izulla, P., Munyao, J., Ireri, N.,… Kimani, J. (2014). Alto riesgo de VIH en una cohorte de trabajadores sexuales masculinos de Nairobi, Kenia. Infecciones de transmisión sexual, 90 (3), 237–242. https://bbibliograficas.ucc.edu.co:2160/10.1136/sextrans-2013-051310 .
Mercer, CH (2010, octubre). Medir el comportamiento sexual y el riesgo . University College London, Banco de preguntas de encuestas. Obtenido el 15 de febrero de 2020 de https://ukdataservice.ac.uk/media/262883/discover_sqb_sex_mercer.pdf .
Mitchell, K., Wellings, K., Elam, G., Erens, B., Fenton, K. y Johnson, A. (2007). ¿Cómo podemos facilitar informes fiables en encuestas sobre comportamiento sexual? Evidencia de investigación cualitativa. Cultura, salud y sexualidad, 9 (5), 519–531. https://bbibliograficas.ucc.edu.co:2160/10.1080/13691050701432561 .
Mustanski, B., Garofalo, R., Herrick, A. y Donenberg, G. (2007). Los problemas de salud psicosocial aumentan el riesgo de contraer el VIH entre los hombres jóvenes urbanos que tienen sexo con hombres: evidencia preliminar de una sindemia que necesita atención. Annals of Behavioral Medicine, 34 (1), 37–45. https://bbibliograficas.ucc.edu.co:2160/10.1007/BF02879919 .
Patel, P., Borkowf, CB, Brooks, JT, Lasry, A., Lansky, A. y Mermin, J. (2014). Estimación del riesgo de transmisión del VIH por acto: una revisión sistemática. AIDS, 28 (10), 1509-1519. https://bbibliograficas.ucc.edu.co:2160/10.1097/QAD.0000000000000298 .
Pellowski, JA, Kalichman, SC, Matthews, KA y Adler, N. (2013). Una pandemia de pobres: desventaja social y epidemia de VIH. Psicólogo estadounidense, 68 (4), 197-209. https://bbibliograficas.ucc.edu.co:2160/10.1037/a0032694 . Artículo Google Scholar
Pines, HA, Gorbach, PM, Weiss, RE, Reback, CJ, Landovitz, RJ, Mutchler, MG y Mitsuyasu, RT (2016). Predictores a nivel individual, de pareja y de eventos sexuales del uso de condones durante el coito anal receptivo entre hombres VIH negativos que tienen relaciones sexuales con hombres en Los Ángeles. AIDS and Behavior, 20 (6), 1315-1326. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10461-015-1218-4 .
Quevedo-Gómez, MC, Krumeich, A., Abadía-Barrero, CE, Pastrana-Salcedo, EM y van den Borne, H. (2011). Prevención de acciones estructurales en Cartagena, Colombia: un estudio cualitativo. Revista Panamericana de Revista Panamericana de Salud Pública, 30 (1), 65–73.
Rhodes, SD y Wong, año fiscal (2016). Prevención del VIH entre diversos HSH jóvenes: necesidades, prioridades y oportunidades de investigación. Educación y prevención del SIDA, 28 (3), 191–201. https://bbibliograficas.ucc.edu.co:2160/10.1521/aeap.2016.28.3.191 .
Rubio Mendoza, ML, Jacobson, JO, Morales-Miranda, S., Sierra Alarcón, C. Á. Y Luque Núñez, R. (2015). Alta carga de VIH en hombres que tienen sexo con hombres en las ciudades más grandes de Colombia: Hallazgos de un estudio integrado de vigilancia biológica y conductual. PLoS ONE, 10 (8), e0131040. https://bbibliograficas.ucc.edu.co:2160/10.1371/journal.pone.0131040 .
andfort, T., Yi, H., Knox, J. y Reddy, V. (2013). Tipos de parejas sexuales como determinantes del riesgo de VIH en HSH sudafricanos: un análisis de conglomerados a nivel de eventos. AIDS and Behavior, 17 (Suplemento 1), S23-S32. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10461-012-0294-y
Sapsirisavat, V., Phanuphak, N., Keadpudsa, S., Egan, JE, Pussadee, K., Klaytong, P.,… Equipo de estudio de FE. (2016). Características psicosociales y de comportamiento de hombres de alto riesgo que tienen sexo con hombres (HSH) de estado serológico VIH positivo desconocido en Bangkok, Tailandia. AIDS and Behavior, 20 (Suplemento 3), 386–397. https://bbibliograficas.ucc.edu.co:2160/10.1007/s10461-016-1519-2 .
Shao, Y. y Williamson, C. (2012). La epidemia del VIH-1: países de ingresos bajos a medianos. Perspectivas de Cold Spring Harbor en Medicina, 2 (3), a007187. https://bbibliograficas.ucc.edu.co:2160/10.1101/cshperspect.a007187 .
SinViolencia LGBTI-Red Regional de Información sobre Violencias LGBTI en América Latina y el Caribe. (2019). El prejuicio no conoce fronteras Homicidios de lesbianas, gays, bisexuales, trans en los Países de América Latina y el Caribe 2014-2019 . Colombia Diversa https://colombiadiversa.org/colombiadiversa2016/wp-content/uploads/2019/08/Informe_Prejuicios_web.pdf
Stahlman, S., Hargreaves, JR, Sprague, L., Stangl, AL y Baral, SD (2017). Medir el estigma de la conducta sexual para informar sobre programas eficaces de prevención y tratamiento del VIH para poblaciones clave. Vigilancia y salud pública de la JMIR, 3 (2), e23. https://bbibliograficas.ucc.edu.co:2160/10.2196/publichealth.7334 .
Sullivan, PS, Carballo-Diéguez, A., Coates, T., Goodreau, SM, McGowan, I., Sanders, EJ,… Sánchez, J. (2012). Éxitos y desafíos de la prevención del VIH en hombres que tienen sexo con hombres. Lancet, 380 (9839), 388–399. https://bbibliograficas.ucc.edu.co:2160/10.1016/S0140-6736(12)60955-6 .
Tamayo-Zuluaga, B., Macías-Gil, Y., Cabrera-Orrego, R., Henao-Pelaéz, JN y Cardona-Arias, JA (2015). Estigma social en la atención de personas con VIH / sida por estudiantes y profesionales de las áreas de la salud, Medellín. Ciencias de La Salud, 13 (1), 9-23. https://bbibliograficas.ucc.edu.co:2160/10.12804/revsalud13.01.2015.01 .
ONUSIDA. (2010). Prevención combinada del VIH: Adaptación y coordinación de estrategias biomédicas, conductuales y estructurales para reducir las nuevas infecciones por el VIH . Obtenido el 15 de febrero de 2020 de https://www.unaids.org/sites/default/files/media_asset/JC2007_Combination_Prevention_paper_en_0.pdf
ONUSIDA. (2015). Rápido-el seguimiento de la prevención combinada . https://www.unaids.org/sites/default/files/media_asset/20151019_JC2766_Fast-tracking_combination_prevention.pdf
ONUSIDA. (2017a). PUNTO CIEGO: Llegar a hombres y niños Abordar un punto ciego en la respuesta al VIH . Obtenido el 15 de febrero de 2020 de http://www.unaids.org/sites/default/files/media_asset/blind_spot_en.pdf
ONUSIDA. (2017b). Datos de ONUSIDA 2017 . Obtenido el 15 de febrero de 2020 de http://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf
ONUSIDA. (2018). Atlas de poblaciones clave . Consultado el 15 de febrero de 2020 en http://www.aidsinfoonline.org/kpatlas/#/home
NUSIDA. (2019). Datos de ONUSIDA 2019 . Obtenido el 15 de febrero de 2020 de https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf
Vagenas, P., Brown, SE, Clark, JL, Konda, KA, Lama, JR, Sánchez, J.,… Altice, FL (2017). Una evaluación cualitativa del consumo de alcohol y las conductas sexuales de riesgo entre hombres que tienen sexo con hombres y mujeres transgénero en Perú. Uso y abuso de sustancias, 52 (7), 831–839. https://bbibliograficas.ucc.edu.co:2160/10.1080/10826084.2016.1264968 .
OMS: Organización Mundial de la Salud, Centros para el Control y la Prevención de Enfermedades (CDC), ONUSIDA y FHI 360. (2017). Directrices para encuestas bioconductuales para poblaciones en riesgo de contraer el VIH . Obtenido el 15 de febrero de 2020 de https://apps.who.int/iris/bitstream/handle/10665/258924/9789241513012-eng.pdf?sequence=1&ua=1
Wilson, PA, Nanin, J., Amesty, S., Wallace, S., Cherenack, EM y Fullilove, R. (2014). Uso de la teoría sinémica para comprender la vulnerabilidad a la infección por VIH entre hombres negros y latinos en la ciudad de Nueva York. Journal of Urban Health, 91 (5), 983–998. https://bbibliograficas.ucc.edu.co:2160/10.1007/s11524-014-9895-2 .
Xia, Q., Lazar, R., Bernard, MA, McNamee, P., Daskalakis, DC, Torian, LV y Braunstein, SL (2016). La ciudad de Nueva York alcanza los objetivos 90-90-90 de ONUSIDA para los blancos infectados por el VIH, pero no para los latinos, hispanos y negros. Revista de síndromes de inmunodeficiencia adquirida, 73 (3), e59 – e62. https://bbibliograficas.ucc.edu.co:2160/10.1097/QAI.0000000000001132 .
Repositorio UCC
Universidad Cooperativa de Colombia
instacron:Universidad Cooperativa de Colombia
Academic Journal
Wbeimar Aguilar-Jiménez; Lizdany Flórez-Álvarez; Daniel S. Rincón; Damariz Marín-Palma; Alexandra Sánchez-Martínez; Jahnnyer Martínez; María Isabel Zapata; John D. Loaiza; Constanza Cárdenas; Fanny Guzmán; Paula A. Velilla; Natalia A. Taborda; Wildeman Zapata; Juan C. Hernández; Francisco J. Díaz; María T. Rugeles
Biomédica: revista del Instituto Nacional de Salud, Vol 41, Iss Sp. 2, Pp 86-102 (2021)
Academic Journal
Damariz Marín-Palma; Jorge H. Tabares-Guevara; María I. Zapata-Cardona; Wildeman Zapata-Builes; Natalia Taborda; Maria T. Rugeles; Juan C. Hernandez
Frontiers in Immunology, Vol 14 (2023)
Academic Journal
Jorge Emiro Restrepo; Ana Claudia Ossa Giraldo; Luis Felipe Higuita Gutierrez; Wildeman Zapata; Gina Paula Cuartas Montoya
Psicologia: Teoria e Pesquisa, Vol 39 (2023)
Academic Journal
León Gabriel Gómez-Archila; Martina Palomino-Schätzlein; Wildeman Zapata-Builes; Maria T. Rugeles; Elkin Galeano
Frontiers in Molecular Biosciences, Vol 10 (2023)
Academic Journal
María I. Zapata-Cardona; Lizdany Flórez-Álvarez; Tulio J. Lopera; Mateo Chvatal-Medina; Wildeman Zapata-Builes; Francisco J. Diaz; Wbeimar Aguilar-Jimenez; Natalia Taborda; Juan C. Hernandez; Maria T. Rugeles
Frontiers in Immunology, Vol 13 (2022)
Academic Journal
Ruben D. Arias-Pérez; Salomón Gallego-Quintero; Natalia A. Taborda; Jorge E. Restrepo; Renato Zambrano-Cruz; William Tamayo-Agudelo; Patricia Bermúdez; Constanza Duque; Ismael Arroyave; Johanna A. Tejada-Moreno; Andrés Villegas-Lanau; Alejandro Mejía-García; Wildeman Zapata; Juan C. Hernandez; Gina Cuartas-Montoya
BMC Medical Genomics, Vol 14, Iss 1, Pp 1-8 (2021)
Academic Journal
Claudia Urueña; Ricardo Ballesteros-Ramírez; Alejandra Gomez-Cadena; Alfonso Barreto; Karol Prieto; Sandra Quijano; Pablo Aschner; Carlos Martínez; Maria I. Zapata-Cardona; Hajar El-Ahanidi; Camilla Jandus; Lizdany Florez-Alvarez; Maria Teresa Rugeles; Wildeman Zapata-Builes; Angel Alberto Garcia; Susana Fiorentino
Frontiers in Medicine, Vol 9 (2022)
검색 결과 제한하기
제한된 항목
[검색어] Zapata, Wildeman
발행연도 제한
-
학술DB(Database Provider)
저널명(출판물, Title)
출판사(Publisher)
자료유형(Source Type)
주제어
언어