학술논문

발행년
-
(예 : 2010-2015)
'학술논문' 에서 검색결과 165건 | 목록 1~10
Electronic Resource
Loureiro , P E G , Cadete , S M S , Tokin , R , Evtuguin , D V , Lund , H & Johansen , K S 2021 , ' Enzymatic Fibre Modification During Production of Dissolving Wood Pulp for Regenerated Cellulosic Materials ' , Frontiers in Plant Science , vol. 12 , 717776 .
Electronic Resource
instname:Universidad del Rosario; reponame:Repositorio Institucional EdocUR; Reinking MF, Austin TM, Richter RR, Krieger MM. Medial Tibial Stress Syndrome in active individuals: a systematic review and meta-analysis of risk factors. Sports Health. 2017;9(3):252-61.; Moen MH, Tol JL, Weir A, Steunebrink M, Winter TCD. Medial Tibial Stress Syndrome: a critical review. Sports Medicine. 2009;39(7):523-46.; Winkelmann ZK, Anderson D, Games KE, Eberman LE. Risk factors for Medial Tibial Stress Syndrome in active individuals: an evidence-based review. 2016. p. 1049-52.; Hamstra-Wright KL, Bay C, Bliven KCH. Risk factors for Medial Tibial Stress Syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. British Journal of Sports Medicine. 2015;49(6):362-9.; Franklyn M, Oakes B. Aetiology and mechanisms of injury in Medial Tibial Stress Syndrome: current and future developments. World Journal of Orthopaedics. 2015;6(8):577-89.; Gómez-García S. Update on Medial Tibial Stress Syndrome. Revista Científica General José María Córdova. 2016;14(17):231-48.; Reshef N, Guelich DR. Medial Tibial Stress Syndrome. Clinics in Sports Medicine. 2012;31:273-90.; Newman P, Witchalls J, Waddington G, Adams R. Risk factors associated with Medial Tibial Stress Syndrome in runners: a systematic review and meta-analysis. Open Access J Sports Med. 2013;4:229-41.; Magnusson HI, Westlin NE, Nyqvist F, Gardsell P, Seeman E, Karlsson MK. Abnormally decreased regional bone density in athletes with Medial Tibial Stress Syndrome. 2001. p. 712-5.; Zimmermann WO, Helmhout PH, Beutler A. Prevention and treatment of exercise related leg pain in young soldiers; a review of the literature and current practice in the Dutch Armed Forces. Journal Of The Royal Army Medical Corps. 2017;163(2):94-103.; Garnock C, Witchalls J, Newman P. Predicting individual risk for Medial Tibial Stress Syndrome in navy recruits. Journal of Science and Medicine in Sport. 2018;21(6):586-90.; Hauret KG, Jones BH, Canham-Chervak M, Canada S, Bullock SH. Musculoskeletal injuries: description of an under-recognized injury problem among military personnel. American Journal of Preventive Medicine. 2010;38(1S):S61-S70.; Jones BH, Canham-Chervak M, Canada S, Mitchener TA, Moore LS. Medical surveillance of injuries in the U.S. Military: descriptive epidemiology and recommendations for improvement. American Journal of Preventive Medicine. 2010;38(1S):S42-S60.; Ruscio BA, Jones BH, Canham-Chervak M, Bullock SH, Burnham BR, Rennix CP, et al. A process to identify military injury prevention priorities based on injury type and limited duty days. American Journal of Preventive Medicine. 2010;38(1S):S19-S33.; Smith GS, Dannenberg AL, Amoroso PJ. Hospitalization due to injuries in the military. Evaluation of current data and recommendations on their use for injury prevention. American Journal of Preventive Medicine. 2000;18(1S):41-53.; Lauder TD, Baker SP, Smith GS, Lincoln AE. Sports and physical training injury hospitalizations in the army. American Journal of Preventive Medicine. 2000;18(1S):118-28.; Almeida SA, Williams KM, Shaffer RA, Luz JT, Badong E. A physical training program to reduce musculoskeletal injuries in U.S. Marine Corps Recruits. Naval Health Research Center; 1997.; Jones BH, Hansen BC. An armed forces epidemiological board evaluation of injuries in the military. American Journal of Preventive Medicine. 2000;18(3S):14-25.; Kaufman KR, Brodine S, Shaffer R. Military training-related injuries. Surveillance, research, and prevention. American Journal of Preventive Medicine. 2000;18(1S):54-63.; Jones BH, Knapik JJ. Physical training and exercise-related injuries. Surveillance, research and injury prevention in military populations. Sports Med. 1999;27(2S):111-25.; Bullock SH, Jones BH, Gilchrist J, Marshall SW. Prevention of physical training-related injuries recommendations for the military and other active populations based on expedited systematic reviews. American Journal of Preventive Medicine. 2010;38(1S):S156-S81.; Andersen K, Grimshaw P, Kelso R, Bentley D. Musculoskeletal lower limb injury risk in army populations. Sports Medicine - Open. 2016;2(1):1.; Knapik J, Ang P, Reynolds K, Jones B. Physical fitness, age, and injury incidence in infantry soldiers. Journal of Occupational and Environmental Medicine. 1993;35(6):598-603.; Abt JP, Sell TC, Lovalekar MT, Keenan KA, Bozich AJ, Lephart SM, et al. Injury epidemiology of U.S. Army special operations forces. Military Medicine. 2014;179(10):1106-12.; Teyhen DS, Shaffer SW, Butler RJ, Goffar SL, Kiesel KB, Plisky PJ, et al. What risk factors are associated with musculoskeletal injury in US Army Rangers? A prospective prognostic study. Clinical Orthopaedics and Related Research. 2015;473(9):2948-58.; Neves EB, Eraso NM, Narváez YS, Rairan FSG, Garcia RCF. Musculoskeletal injuries in sergeants training courses from Brazil and Colombia. Journal of Science and Medicine in Sport. 2017;20(2S):S117.; Yancosek KE, Roy T, Erickson M. Rehabilitation programs for musculoskeletal injuries in military personnel. Current Opinion in Rheumatology. 2012;24(2):232-6.; Songer TJ, LaPorte RE. Disabilities due to injury in the military. American Journal of Preventive Medicine. 2000;18(3S):33-40.; Lincoln AE, Smith GS, Amoroso PJ, Bell NS. The natural history and risk factors of musculoskeletal conditions resulting in disability among US Army personnel. Work. 2002;18(2):99.; Knapik JJ, Canham-Chervak M, Hauret K, Hoedebecke E, Laurin MJ, Cuthie J. Discharges during U.S. Army basic training: injury rates and risk factors. Military Medicine. 2001;166(7):641-7.; Psaila M, Ranson C. Risk factors for lower leg, ankle and foot injuries during basic military training in the Maltese Armed Forces. Physical Therapy in Sport. 2017;24:7-12.; Hewett TE, Myer GD, Ford KR, Paterno MV, Colosimo AJ, Heidt Jr RS, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. American Journal of Sports Medicine. 2005;33(4):492-501.; Barnes CA, Henderson G, Portas MD. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. Journal of Science and Medicine in Sport. 2010;13(4):397-402.; Iguchi J, Watanabe Y, Kimura M, Fujisawa Y, Hojo T, Yuasa Y, et al. Risk factors for injury among japanese collegiate players of american football based on performance test results. Journal Of Strength And Conditioning Research. 2016;30(12):3405-11.; Orr R, Pope R, Peterson S, Hinton B, Stierli M. Leg power as an indicator of risk of injury or illness in police recruits. International Journal of Environmental Research and Public Health. 2016;13(2).; Gómez-Piqueras P, González-Víllora S, Sainz de Baranda Andújar MDP, Contreras-Jordán OR. Functional assessment and injury Risk in a professional soccer team. Sports (Basel, Switzerland). 2017;5(1).; Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clinical Biomechanics. 2011;26(1):23-8.; Powell HC, Silbernagel KG, Brorsson A, Tranberg R, Willy RW. Individuals post-Achilles tendon rupture exhibit asymmetrical knee and ankle kinetics and loading rates during a drop countermovement jump. Journal of Orthopaedic and Sports Physical Therapy. 2018;48(1):34-43.; Bisseling RW, Hot AL, Bredeweg SW, Zwerver J, Mulde T. Are the take-off and landing phase dynamics of the volleyball spike jump related to patellar tendinopathy? British Journal of Sports Medicine. 2008;42(6):483-9.; Bisseling RW, Hof AL, Bredeweg SW, Zwerver J, Mulder T. Relationship between landing strategy and patellar tendinopathy in volleyball. British Journal of Sports Medicine. 2007;41(7):e8.; Decker MJ, Torry MR, Noonan TJ, Riviere A, Sterett WI. Landing adaptations after ACL reconstruction. Medicine and Science in Sports and Exercise. 2002;34(9):1408-13.; Louw Q, Grimmer K, Vaughan C. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study. BMC Musculoskeletal Disorders. 2006;7.; Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clinical Journal of Sport Medicine. 2007;17(4):258-62.; Doherty C, Sweeney K, Caulfield B, Delahunt E, Bleakley C, Hertel J, et al. Lower extremity coordination and symmetry patterns during a drop vertical jump task following acute ankle sprain. Human Movement Science. 2014;38:34-46.; Menzel H-J, Chagas MH, Szmuchrowski LA, Araujo SRS, de Andrade AGP, de Jesus-Moraleida FR. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. Journal Of Strength And Conditioning Research. 2013;27(5):1370-7.; Fischer F, Fink C, Blank C, Dünnwald T, Gföller P, Hoser C, et al. Isokinetic extension strength is associated with single-leg vertical jump height. Orthopaedic Journal of Sports Medicine. 2017;5(11).; Claudino JG, Mezêncio B, Amadio AC, Serrão JC, Cronin J, McMaster DT, et al. The countermovement jump to monitor neuromuscular status: a meta-analysis. Journal of Science and Medicine in Sport. 2017;20(4):397-402.; Wang H, Frame J, Ozimek E, Leib D, Dugan EL. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics. Research Quarterly for Exercise and Sport. 2013;84(3):305-12.; Santtila M, Kyröläinen H, Häkkinen K. Changes in maximal and explosive strength, electromyography, and muscle thickness of lower and upper extremities induced by combined strength and endurance training in soldiers. Journal Of Strength And Conditioning Research. 2009;23(4):1300-8.; O’Kane JW, Sabado L, Tencer A, Neradilek M, Polissar N, Schiff MA. Risk factors for lower extremity overuse injuries in female youth soccer players. Orthopaedic Journal of Sports Medicine. 2017;5(10).; Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. 2010. p. 1968-78.; Yates B, White S. The incidence and risk factors in the development of Medial Tibial Stress Syndrome among naval recruits. American Journal of Sports Medicine. 2004;32(3):772-80.; Moen MH, Bongers T, Bakker EW, Zimmermann WO, Weir A, Tol JL, et al. Risk factors and prognostic indicators for Medial Tibial Stress Syndrome. Scandinavian Journal of Medicine and Science in Sports. 2012;22(1):34-9.; Sobhani V, Shakibaee A, Jahandideh D, Aghda AK, Meybodi MK, Delavari A. Studying the relation between Medial Tibial Stress Syndrome and anatomic and anthropometric characteristics of military male personnel. Asian Journal of Sports Medicine. 2015;6(2):1-5.; Burne SG, Khan KM, Boudville PB, Mallet RJ, Newman PM, Steinman LJ, et al. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study. British Journal of Sports Medicine. 2004;38(4):441-5.; Plisky MS, Rauh MJ, Underwood FB, Tank RT, Heiderscheit B. Medial Tibial Stress Syndrome in high school cross-country runners: incidence and risk factors. Journal of Orthopaedic and Sports Physical Therapy. 2007;37(2):40-7.; Grier T, Canham-Chervak M, McNulty V, Jones BH. Extreme conditioning programs and injury risk in a US Army brigade combat team. US Army Medical Department journal. 2013:36-47.; Orgel E, Sposto R, Freyer DR, Mittelman SD, Mueske NM, Gilsanz V. Limitations of body mass index to assess body composition due to sarcopenic obesity during leukemia therapy. Leukemia and Lymphoma. 2018;59(1):138-45.; DANE. Pobreza Monetaria y Multidimensional en Colombia: año 2017. 2018.; Tounsi M, Aouichaoui C, Bouhlel E, Tabka Z, Trabelsi Y. Effect of socioeconomic status on leg muscle power in tunisian adolescent athletes. Science and Sports. 2017;32(5):303-11.; El Hage R, Zakhem E, Zunquin G, Theunynck D, Moussa E, Maalouf G. Performances in vertical jump and horizontal jump tests are positive determinants of hip bone mineral density in a group of young adult men. Journal of Clinical Densitometry. 2015;18(1):136-7.; Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. The American Journal of Sports Medicine. 2006;34(2):299-311.; Song J, Choe K, Neary M, Cameron KL, Zifchock RA, Trepa M, et al. Comprehensive biomechanical characterization of feet in USMA cadets: comparison across race, gender, arch flexibility, and foot types. Gait and Posture. 2018;60:175-80.; Knapik JJ, Sharp MA, Canham-Chervak M, Hauret K, Patton JF, Jones BH. Risk factors for training-related injuries among men and women in basic combat training. Med Sci Sports Exerc. 2001;33(6):946-54.; Cormie P, Newton RU, McGuigan MR. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Medicine and Science in Sports and Exercise. 2010;42(9):1731-44.; Jakobsen MD, Sundstrup E, Andersen LL, Randers MB, Krustrup P, Kjær M, et al. The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Human Movement Science. 2012;31(4):970-86.; Caserotti P, Aagaard P, Simonsen EB, Puggaard L. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. European Journal of Applied Physiology. 2001;84(3):206-12.; Siegmund JA, Huxel KC, Swanik CB. Compensatory mechanisms in basketball players with jumper's knee. Journal of Sport Rehabilitation. 2008;17(4):358-71.; Vernillo G, Pisoni C, Thiebat G. Strength asymmetry between front and rear leg in elite snowboard athletes. Clinical Journal of Sport Medicine. 2016;26(1):83-5.; Fort-Vanmeerhaeghe A, Montalvo AM, Sitjà-Rabert M, Kiefer AW, Myer GD. Neuromuscular asymmetries in the lower limbs of elite female youth basketball players and the application of the skillful limb model of comparison. Physical Therapy in Sport. 2015;16(4):317-23.; Linkenauger SA, Stefanucci JK, Proffitt DR, Witt JK, Bakdash JZ. Asymmetrical body perception: a possible role for neural body representations. Psychological Science. 2009;20(11):1373-80.; Lopes TJA, Simic M, Pappas E, Bunn PS, Terra BS, Alves DS, et al. Prevalence of musculoskeletal symptoms among brazilian merchant navy cadets: differences between sexes and school years. Military Medicine. 2017;182(11):e1967-e72.; Almeida SA, Williams KM, Shaffer RA, Brodine SK. Epidemiological patterns of musculoskeletal injuries and physical training. Medicine and Science in Sports and Exercise. 1999;31(8):1176-82.
검색 결과 제한하기
제한된 항목
[검색어] Cadete, V.
발행연도 제한
-
학술DB(Database Provider)
저널명(출판물, Title)
출판사(Publisher)
자료유형(Source Type)
주제어
언어