학술논문
A Fast Iterative Method for Chandrasekhar's H-functions for General Laws of Scattering
Document Type
Working Paper
Author
Source
Astrophysics and Space Science Vol.358, 32-38 (2015)
Subject
Language
Abstract
This work shows that notable acceleration of the speed of calculating Chandrasekhar's H-functions for general laws of scattering with an iterative method can be realized by supplying a starting pproximation produced by the following procedure: (i) in the cases of azimuth-angle independent Fourier components, values of the isotropic scattering H-function given by an accurate yet simple-to-apply formula, in particular, the one by Kawabata and Limaye (Astrophys. and Space Sci. Vol. 332, 365-371, 2011 DOI 10.1007/s10509-010-0512-x; see also Astrophys. and Space Sci. Vol. 348, 601, 2013 DOI 10.1007/1009-013-1589-9, for erratum), and (ii) for azimuth-angle dependent Fourier components, an already obtained solution of the next lower order term. The paper has been published in Astrophys. and Space Sci. Vol. 358, 32-38 (2015) DOI 10.1007/s10509-015-2434-0, and the final publication is available at link.springer.com.
Comment: 10 pages, 0 figure, 4 tables
Comment: 10 pages, 0 figure, 4 tables