학술논문

Gradient-coated radial-structured scaffolds for rapid dural regeneration: Providing fast migration pathways and strong migration dynamics
Document Type
Article
Source
In Composites Part B 15 February 2025 291
Subject
Language
ISSN
1359-8368
Abstract
The unique functions of the natural dura mater necessitate the design of dural restorations with a multilayered structure to achieve multifunctionality of anti-leakage, anti-adhesion, and pro-regenerative. Due to the barrier effect of the anti-leakage or anti-adhesion layer on cells, the pro-regenerative layer repairs dural defects mainly by inducing meningeal fibroblasts at the edge of defects. Hence, constructing scaffolds that provide fast and straight migration pathways and strong migration dynamics is the key to achieving fast defect repair. In this study, a radical-structured scaffold coated with concentration-gradient acellular small intestinal submucosa (SIS) is designed and constructed. The scaffold provides a straight channel with about 75 μm of width suitable for cell invasion and strong migration dynamics caused by SIS coating. Both in vitro and in vivo experiments demonstrate its superior efficacy in promoting cellular invasion and tissue regeneration compared to random-structured scaffold. Specifically, cell migration in the scaffolds at day 14 after implantation, and collagen deposition and angiogenesis at day 28 after implantation were elevated 4.43-, 0.51-, and 2.61-fold, respectively. These enhancement effects were further improved after being coated with SIS. Consequently, this radical-structured scaffold coated with concentration-gradient SIS is promising for promoting rapid dural regeneration.