학술논문

Real-time resolution of short-read assembly graph using ONT long reads.
Document Type
Article
Source
PLoS Computational Biology. 1/20/2021, Vol. 17 Issue 1, p1-18. 18p. 3 Diagrams, 2 Charts, 2 Graphs.
Subject
*GRAPHICAL user interfaces
*BACTERIAL genomes
*ERROR rates
*SOURCE code
Language
ISSN
1553-734X
Abstract
A streaming assembly pipeline utilising real-time Oxford Nanopore Technology (ONT) sequencing data is important for saving sequencing resources and reducing time-to-result. A previous approach implemented in npScarf provided an efficient streaming algorithm for hybrid assembly but was relatively prone to mis-assemblies compared to other graph-based methods. Here we present npGraph, a streaming hybrid assembly tool using the assembly graph instead of the separated pre-assembly contigs. It is able to produce more complete genome assembly by resolving the path finding problem on the assembly graph using long reads as the traversing guide. Application to synthetic and real data from bacterial isolate genomes show improved accuracy while still maintaining a low computational cost. npGraph also provides a graphical user interface (GUI) which provides a real-time visualisation of the progress of assembly. The tool and source code is available at https://github.com/hsnguyen/assembly. Author summary: Hybrid genome assembly algorithms combine high accuracy short reads with error-prone long reads with the goal of generating highly contiguous assemblies with low error rates. Short read sequence data is relatively inexpensive in comparison to long-read sequence data, and, moreover short-read sequence data has already been collected for many bacterial species, thus motivating development of methods wh ich are frugal with respect to acquisition of long-read sequence data. One of the attractive features of the Oxford Nanopore Technology's sequencers is that they generate sequence data in real-time, and in principle sequencing can be stopped once enough data is acquired. However, there is only one previous attempt for greedy genome scaffolding of contigs in real-time, which was prone to assembly errors. In this paper we describe a new tool—npGraph—which resolves the assembly graph in real-time as sequence is generated; coupled with assembly visualisation showing assembly graph resolution in real-time. We show that npGraph generates completed bacterial assemblies which are as accurate as state-of-the-art batch hybrid assembly pipelines, and also provides substantial computational speed-up. [ABSTRACT FROM AUTHOR]