학술논문

Quantifying the localized relationship between vector containment activities and dengue incidence in a real-world setting: A spatial and time series modelling analysis based on geo-located data from Pakistan.
Document Type
Article
Source
PLoS Neglected Tropical Diseases. 5/11/2020, Vol. 14 Issue 5, p1-22. 22p.
Subject
*TIME series analysis
*DENGUE hemorrhagic fever
*DENGUE
*COMMUNICABLE diseases
*DISEASE incidence
*DATABASES
Language
ISSN
1935-2727
Abstract
Increasing urbanization is having a profound effect on infectious disease risk, posing significant challenges for governments to allocate limited resources for their optimal control at a sub-city scale. With recent advances in data collection practices, empirical evidence about the efficacy of highly localized containment and intervention activities, which can lead to optimal deployment of resources, is possible. However, there are several challenges in analyzing data from such real-world observational settings. Using data on 3.9 million instances of seven dengue vector containment activities collected between 2012 and 2017, here we develop and assess two frameworks for understanding how the generation of new dengue cases changes in space and time with respect to application of different types of containment activities. Accounting for the non-random deployment of each containment activity in relation to dengue cases and other types of containment activities, as well as deployment of activities in different epidemiological contexts, results from both frameworks reinforce existing knowledge about the efficacy of containment activities aimed at the adult phase of the mosquito lifecycle. Results show a 10% (95% CI: 1–19%) and 20% reduction (95% CI: 4–34%) reduction in probability of a case occurring in 50 meters and 30 days of cases which had Indoor Residual Spraying (IRS) and fogging performed in the immediate vicinity, respectively, compared to cases of similar epidemiological context and which had no containment in their vicinity. Simultaneously, limitations due to the real-world nature of activity deployment are used to guide recommendations for future deployment of resources during outbreaks as well as data collection practices. Conclusions from this study will enable more robust and comprehensive analyses of localized containment activities in resource-scarce urban settings and lead to improved allocation of resources of government in an outbreak setting. Author summary: Increasing global urbanization is having a profound effect on infectious disease risk, in particular presenting challenges for governments to allocate limited resources for controlling disease incidence at different locations within a city. With recent advances in the way data is collected, getting evidence about the efficacy of highly localized containment and intervention activities, which can lead to optimal deployment of resources, is possible. Here we develop methods for systematically analyzing the localized sub-city relationship between containment activities and disease incidence. Using precisely geo-located data on dengue containment activities and incidence, collected from two cities in Pakistan, we identify how the generation of new dengue cases changes in space and time with the application of seven types of containment activities. Our results show that activities targeted at adult stage of mosquito can reduce the generation of new dengue cases by 20% in their immediate vicinity and are effective up to a distance of 1km from the site of application. Further, given limitations due to the real-world nature of the data, we provide guidelines to improve data collection practices. The methods and results will enable governments and practitioners to improve the deployment of containment activities in an outbreak setting. [ABSTRACT FROM AUTHOR]