학술논문

Cornification of nail keratinocytes requires autophagy for bulk degradation of intracellular proteins while sparing components of the cytoskeleton
Document Type
article
Source
Apoptosis. 24(1-2)
Subject
Biochemistry and Cell Biology
Biological Sciences
Generic health relevance
Skin
Animals
Autophagy
Cell Differentiation
Cytoplasm
Cytoskeleton
Epidermis
Hoof and Claw
Intracellular Space
Keratinocytes
Keratins
Mice
Mice
Inbred C57BL
Mice
Inbred CBA
Mice
Knockout
Organogenesis
Proteolysis
Cornification
Proteomics
Keratin
Nail
Medical Physiology
Biochemistry & Molecular Biology
Biochemistry and cell biology
Language
Abstract
Epidermal keratinocytes undergo cornification to form the cellular building blocks of hard skin appendages such as nails and the protective layer on the surface of the skin. Cornification requires the cross-linking of structural proteins and the removal of other cellular components to form mechanically rigid and inert corneocytes. Autophagy has been proposed to contribute to this intracellular remodelling process, but its molecular targets in keratinocytes, if any, have remained elusive. Here, we deleted the essential autophagy factor Atg7 in K14-positive epithelia of mice and determined by proteomics the impact of this deletion on the abundance of individual proteins in cornified nails. The genetic suppression of autophagy in keratinocytes resulted in a significant increase in the number of proteins that survived cornification and in alterations of their abundance in the nail proteome. A broad range of enzymes and other non-structural proteins were elevated whereas the amounts of cytoskeletal proteins of the keratin and keratin-associated protein families, cytolinker proteins and desmosomal proteins were either unaltered or decreased in nails of mice lacking epithelial autophagy. Among the various types of non-cytoskeletal proteins, the subunits of the proteasome and of the TRiC/CCT chaperonin were most strongly elevated in mutant nails, indicating a particularly important role of autophagy in removing these large protein complexes during normal cornification. Taken together, the results of this study suggest that autophagy is active during nail keratinocyte cornification and its substrate specificity depends on the accessibility of proteins outside of the cytoskeleton and their presence in large complexes.