학술논문

Dual Polarized, Multiband Four-Port Decagon Shaped Flexible MIMO Antenna for Next Generation Wireless Applications
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:128132-128150 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
MIMO communication
Antennas
Substrates
Bandwidth
Slot antennas
Wireless communication
Antenna feeds
ARBW
dual polarized
flexible
LTE
MIMO
sub-6 GHz 5G NR
Wi-Fi
WLAN
Language
ISSN
2169-3536
Abstract
A compact, dual polarized, multiband four-port flexible Multiple Input Multiple Output (MIMO) antennae with the connected ground and high isolation is designed with computation and experimental measurement studies. All four monopole radiators are embedded decagon-shaped flexible FR-4 substrate with an outer radius of 10 mm in order to accomplish circularly polarized (CP) radiations, bandwidth enhancement, and compact size of only $45\times 38\times 0.2$ mm3 ( $0.375\lambda \times 0.316\lambda \times 0.0016\lambda $ , at lowest resonating frequency 2.5GHz). The interconnected ground structure is loaded with an Interlaced Lozenge Structure (ILS) to suppress the surface wave radiations resulting in low mutual coupling between the radiators. The proposed MIMO antenna demonstrates measured 10-dB impedance bandwidths of 9.63% (2.37–2.61 GHz), 28.79% (3.30–4.41 GHz), and 16.91% (4.98–5.90 GHz) in the LTE 38/40, Sub-6 GHz 5G NR n77/n78, WLAN and Wi-Fi bands, respectively. Furthermore, broad 3-dB Axial Ratio Bandwidth (ARBW) of 28.79% (3.30–4.41 GHz) with gain greater than 4 dBi and efficiency above 80% are achieved. Finally, the bending analysis of the proposed flexible MIMO antenna along the X- and Y- directions shows good performances in terms of scattering parameters, 3 dB ARBW, and MIMO diversity parameters.