학술논문

A Novel Decision Level Class-Wise Ensemble Method in Deep Learning for Automatic Multi-Class Classification of HER2 Breast Cancer Hematoxylin-Eosin Images
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:46093-46103 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Breast cancer
Feature extraction
Classification algorithms
Training
Testing
Histopathology
Deep learning
Ensemble learning
Epidermis
HER2
ensemble learning
histopathology
breast cancer
multi-class classification
Language
ISSN
2169-3536
Abstract
The Human Epidermal Growth Factor Receptor 2 (HER2) is one of the aggressive subtypes of breast cancer. The HER2 status decides the requirement of breast cancer patients to receive HER2-targeted therapy. The HER2 testing involves combining Immunohistochemistry (IHC) screening, followed by fluorescence in situ hybridization (FISH) for cases where IHC results are equivocal. These tests may involve multiple trials, are time intensive, and tend to be more expensive for certain classes of people. Hematoxylin and Eosin (HE) staining is employed for visualizing general tissue morphology and is a routine, cost-effective method. In this study, we introduce a novel automated class-wise weighted average ensemble deep learning algorithm at the decision level. The proposed algorithm fuses three pre-trained deep-learning models at the decision level by assigning a weight to each class based on their performance of the model to classify the HE-stained breast histopathology images into multi-class HER2 statuses as HER2-0+, HER2-1+, HER2-2+, and HER2-3+. The class-wise weight allocation to the base classifiers is one of the key features of the proposed algorithm. The presented framework surpasses all the existing methods currently employed on the Breast Cancer Immunohistochemistry (BCI) dataset, establishing itself as a dependable approach for detecting HER2 status from HE-stained images. This study highlights the robustness of the proposed algorithm as well as the sufficient information encapsulated within HE-stained images for the effective detection of the HER2 protein present in breast cancer. Therefore, the proposed method possesses the potential to sideline the need for IHC laboratory tests, which hoard time and money.