학술논문

Breast Tumor Localization by Prone to Supine Landmark Driven Registration for Surgical Planning
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:122901-122911 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Breast
Surgery
Magnetic resonance imaging
Planning
Lesions
Optical imaging
Breast cancer
multimodal imaging
non-rigid registration
surgical planning
Language
ISSN
2169-3536
Abstract
Breast cancer is the most common cancer in women worldwide. Screening programs and imaging improvements have increased the detection of clinically occult non-palpable lesions requiring preoperative localization. Wire guided localization (WGL) is the current standard of care for the excision of non-palpable carcinomas during breast conserving surgery. Due to the current limitations of intraoperative tumor localization approaches, the integration of multimodal imaging information may be especially relevant in surgical planning. This research proposes a novel method for performing preoperative image-to-surgical surface data alignment to determine the position of the tumor at the time of surgery and aid preoperative planning. First, the volume of the breast in the surgical position is reconstructed and a set of surface correspondences is defined. Then, the preoperative (prone) and intraoperative (supine) volumes are co-registered using landmark driven non-rigid registration methods. We compared the performances of diffeomorphic and Bspline based registration methods. Finally, our method was validated using clinical data from 67 patients considering as target registration error (TRE) the distance between the estimated tumor position and the reference surgical position. The proposed method achieved a TRE of 16.21 ± 8.18 mm and it could potentially assist the surgery planning and guidance of breast cancer treatment in the clinical practice.