학술논문

Tiny Robot Learning (tinyRL) for Source Seeking on a Nano Quadcopter
Document Type
Conference
Source
2021 IEEE International Conference on Robotics and Automation (ICRA) Robotics and Automation (ICRA), 2021 IEEE International Conference on. :7242-7248 May, 2021
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
General Topics for Engineers
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Automation
Navigation
Microcontrollers
Conferences
Robot learning
Inference algorithms
Task analysis
Motion and Path Planning
Aerial Systems: Applications
Reinforcement Learning
Language
ISSN
2577-087X
Abstract
We present fully autonomous source seeking onboard a highly constrained nano quadcopter, by contributing application-specific system and observation feature design to enable inference of a deep-RL policy onboard a nano quadcopter. Our deep-RL algorithm finds a high-performance solution to a challenging problem, even in presence of high noise levels and generalizes across real and simulation environments with different obstacle configurations. We verify our approach with simulation and in-field testing on a Bitcraze CrazyFlie using only the cheap and ubiquitous Cortex-M4 microcontroller unit. The results show that by end-to-end application-specific system design, our contribution consumes almost three times less additional power, as compared to a competitive learning-based navigation approach onboard a nano quadcopter. Thanks to our observation space, which we carefully design within the resource constraints, our solution achieves a 94% success rate in cluttered and randomized test environments, as compared to the previously achieved 80%. We also compare our strategy to a simple finite state machine (FSM), geared towards efficient exploration, and demonstrate that our policy is more robust and resilient at obstacle avoidance as well as up to 70% more efficient in source seeking. To this end, we contribute a cheap and lightweight end- to-end tiny robot learning (tinyRL) solution, running onboard a nano quadcopter, that proves to be robust and efficient in a challenging task.