학술논문

Mitochondrial Transcription Termination Factor 27 Is Required for Salt Tolerance in Arabidopsis thaliana
Document Type
article
Source
International Journal of Molecular Sciences, Vol 22, Iss 3, p 1466 (2021)
Subject
Arabidopsis
mTERF27
MORF8
salt stress
mitochondrial morphology
Biology (General)
QH301-705.5
Chemistry
QD1-999
Language
English
ISSN
1422-0067
1661-6596
Abstract
In plants, mTERF proteins are primarily found in mitochondria and chloroplasts. Studies have identified several mTERF proteins that affect plant development, respond to abiotic stresses, and regulate organellar gene expression, but the functions and underlying mechanisms of plant mTERF proteins remain largely unknown. Here, we investigated the function of Arabidopsis mTERF27 using molecular genetic, cytological, and biochemical approaches. Arabidopsis mTERF27 had four mTERF motifs and was evolutionarily conserved from moss to higher plants. The phenotype of the mTERF27-knockout mutant mterf27 did not differ obviously from that of the wild-type under normal growth conditions but was hypersensitive to salt stress. mTERF27 was localized to the mitochondria, and the transcript levels of some mitochondrion-encoded genes were reduced in the mterf27 mutant. Importantly, loss of mTERF27 function led to developmental defects in the mitochondria under salt stress. Furthermore, mTERF27 formed homomers and directly interacted with multiple organellar RNA editing factor 8 (MORF8). Thus, our results indicated that mTERF27 is likely crucial for mitochondrial development under salt stress, and that this protein may be a member of the protein interaction network regulating mitochondrial gene expression.