학술논문

Anisotropic finite-size scaling of an elastic string at the depinning threshold in a random-periodic medium
Document Type
article
Source
Papers in Physics, Vol 2, Iss 0, p 020008 (2010)
Subject
Depinning Transition
Disordered Elastic Systems
Science
Physics
QC1-999
Language
English
ISSN
1852-4249
Abstract
We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning. Received: 20 October 2010, Accepted: 1 December 2010; Edited by: A. Vindigni; Reviewed by: A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; DOI: 10.4279/PIP.020008