학술논문

Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway
Document Type
article
Source
Antioxidants, Vol 12, Iss 1, p 45 (2022)
Subject
dimethyl fumarate
blue-light
nuclear factor (erythroid-derived)-like 2
retinal pigment epithelium
oxidative stress
NRF2 pathway
Therapeutics. Pharmacology
RM1-950
Language
English
ISSN
2076-3921
Abstract
The purpose of this study is to investigate the protective effect of dimethyl fumarate (DMF), the methyl-ester of fumaric acid, against blue-light (BL) exposure in retinal pigment epithelial (RPE) cells. ARPE-19 cells, a human RPE cell line, were cultured with DMF followed by exposure to BL. Reactive oxygen species (ROS) generation, cell viability, and cell death rate were determined. Real-time polymerase chain reaction and Western blotting were performed to determine the change in nuclear factor (erythroid-derived)-like 2 (NRF2) expression. Twenty-seven inflammatory cytokines in the supernatant of culture medium were measured. BL exposure induced ROS generation in ARPE-19 cells, which DMF alleviated in a concentration-dependent manner. BL exposure increased the ARPE-19 cell death rate, which DMF alleviated. BL exposure induced ARPE-19 cell apoptosis, again alleviated by DMF. Under BL exposure, DMF increased the NRF2 mRNA level and promoted NRF2 expression in the nucleus. BL also strongly increased interleukin (IL)-1β and fibroblast growth factor (FGF) expression. BL strongly induced RPE cell damage with apoptotic change while DMF mainly reduced inflammation in BL-induced RPE damage, resulting in blockade of cell death. DMF has a protective effect in RPE cells against BL exposure via activation of the NRF2 pathway.