학술논문

Learning Image Aesthetic Assessment from Object-level Visual Components
Document Type
Working Paper
Source
Subject
Computer Science - Multimedia
Language
Abstract
As it is said by Van Gogh, great things are done by a series of small things brought together. Aesthetic experience arises from the aggregation of underlying visual components. However, most existing deep image aesthetic assessment (IAA) methods over-simplify the IAA process by failing to model image aesthetics with clearly-defined visual components as building blocks. As a result, the connection between resulting aesthetic predictions and underlying visual components is mostly invisible and hard to be explicitly controlled, which limits the model in both performance and interpretability. This work aims to model image aesthetics from the level of visual components. Specifically, object-level regions detected by a generic object detector are defined as visual components, namely object-level visual components (OVCs). Then generic features representing OVCs are aggregated for the aesthetic prediction based upon proposed object-level and graph attention mechanisms, which dynamically determines the importance of individual OVCs and relevance between OVC pairs, respectively. Experimental results confirm the superiority of our framework over previous relevant methods in terms of SRCC and PLCC on the aesthetic rating distribution prediction. Besides, quantitative analysis is done towards model interpretation by observing how OVCs contribute to aesthetic predictions, whose results are found to be supported by psychology on aesthetics and photography rules. To the best of our knowledge, this is the first attempt at the interpretation of a deep IAA model.