학술논문

An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality
Document Type
Working Paper
Source
Subject
Mathematics - Functional Analysis
Mathematics - Operator Algebras
47A12, 47A30, 47B15
I.1
Language
Abstract
We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if $\A_i,\B_i,\X_i\in\bh$ ($i=1,2,\cdots,n$), $m\in\N$, $p,q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $\phi$ and $\psi$ are non-negative functions on $[0,\infty)$ which are continuous such that $\phi(t)\psi(t)=t$ for all $t \in [0,\infty)$, then \begin{equation*} w^{2r}\bra{\sum_{i=1}^{n}\X_i\A_i^m\B_i}\leq \frac{n^{2r-1}}{m}\sum_{j=1}^{m}\norm{\sum_{i=1}^{n}\frac{1}{p}S_{i,j}^{pr}+\frac{1}{q}T_{i,j}^{qr}}-r_0\inf_{\norm{x}=1}\rho(\xi), \end{equation*} where $r_0=\min\{\frac{1}{p},\frac{1}{q}\}$, $S_{i,j}=\X_i\phi^2\bra{\abs{\A_i^{j*}}}\X_i^*$, $T_{i,j}=\bra{\A_i^{m-j}\B_i}^*\psi^2\bra{\abs{\A_i^j}}\A_i^{m-j}\B_i$ and $$\rho(x)=\frac{n^{2r-1}}{m}\sum_{j=1}^{m}\sum_{i=1}^{n}\bra{\seq{S_{i,j}^r\xi,\xi}^{\frac{p}{2}}-\seq{T_{i,j}^r\xi,\xi}^{\frac{q}{2}}}^2.$$
Comment: No comments