학술논문

Towards numerical-relativity informed effective-one-body waveforms for dynamical capture black hole binaries
Document Type
Working Paper
Source
Subject
General Relativity and Quantum Cosmology
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Dynamical captures of black holes may take place in dense stellar media due to the emission of gravitational radiation during a close passage. Detection of such events requires detailed modelling, since their phenomenology qualitatively differs from that of quasi-circular binaries. Very few models can deliver such waveforms, and none includes information from Numerical Relativity (NR) simulations of non quasi-circular coalescences. In this study we present a first step towards a fully NR-informed Effective One Body (EOB) model of dynamical captures. We perform 14 new simulations of single and double encounter mergers, and use this data to inform the merger-ringdown model of the TEOBResumS-Dali approximant. We keep the initial energy approximately fixed to the binary mass, and vary the mass-rescaled, dimensionless angular momentum in the range $(0.6, 1.1)$, the mass ratio in $(1, 2.15)$ and aligned dimensionless spins in $(-0.5, 0.5)$. We find that the model is able to match NR to $97%$, improving previous performances, without the need of modifying the base-line template. Upon NR informing the model, this improves to $99%$ with the exception of one outlier corresponding to a direct plunge. The maximum EOBNR phase difference at merger for the uninformed model is of $0.15$ radians, which is reduced to $0.1$ radians after the NR information is introduced. We outline the steps towards a fully informed EOB model of dynamical captures, and discuss future improvements.
Comment: 21 pages, 15 figures