학술논문

Single NV in nanodiamond for quantum sensing of protein dynamics in an ABEL trap
Document Type
Working Paper
Source
Subject
Quantitative Biology - Quantitative Methods
Language
Abstract
Enzymes are cellular protein machines using a variety of conformational changes to power fast biochemical catalysis. Our goal is to exploit the single-spin properties of the luminescent NV (nitrogen-vacancy) center in nanodiamonds to reveal the dynamics of an active enzyme complex at physiological conditions with the highest spatio-temporal resolution. Specifically attached to the membrane enzyme FoF1-ATP synthase, the NV sensor will report the adenosine triphosphate (ATP)-driven full rotation of Fo motor subunits in ten consecutive 36{\deg} steps. Conformational dynamics are monitored using either a double electron-electron resonance scheme or NV- magnetometry with optical readout or using NV- relaxometry with a superparamagnetic nanoparticle as the second marker attached to the same enzyme. First, we show how all photophysical parameters like individual size, charge, brightness, spectral range of fluorescence and fluorescence lifetime can be determined for the NV- center in a single nanodiamond held in aqueous solution by a confocal anti-Brownian electrokinetic trap (ABEL trap). Stable photon count rates of individual nanodiamonds and the absence of blinking allow for observation times of single nanodiamonds in solution exceeding hundreds of seconds. For the proposed quantum sensing of nanometer-sized distance changes within an active enzyme, we show that local magnetic field fluctuations can be detected all-optically by analyzing fluorescence lifetime changes of the NV- center in each nanodiamond in solution.
Comment: 14 pages, 5 figures