학술논문

Learning to Solve Job Shop Scheduling under Uncertainty
Document Type
Working Paper
Source
Subject
Computer Science - Artificial Intelligence
Computer Science - Machine Learning
Statistics - Machine Learning
Language
Abstract
Job-Shop Scheduling Problem (JSSP) is a combinatorial optimization problem where tasks need to be scheduled on machines in order to minimize criteria such as makespan or delay. To address more realistic scenarios, we associate a probability distribution with the duration of each task. Our objective is to generate a robust schedule, i.e. that minimizes the average makespan. This paper introduces a new approach that leverages Deep Reinforcement Learning (DRL) techniques to search for robust solutions, emphasizing JSSPs with uncertain durations. Key contributions of this research include: (1) advancements in DRL applications to JSSPs, enhancing generalization and scalability, (2) a novel method for addressing JSSPs with uncertain durations. The Wheatley approach, which integrates Graph Neural Networks (GNNs) and DRL, is made publicly available for further research and applications.
Comment: To be published at CPAIOR 2024