학술논문

Split superconducting and time-reversal symmetry-breaking transitions, and magnetic order in Sr$_2$RuO$_4$ under uniaxial stress
Document Type
Working Paper
Source
Nat. Phys. (2021)
Subject
Condensed Matter - Superconductivity
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
Among unconventional superconductors, Sr$_2$RuO$_4$ has become a benchmark for experimentation and theoretical analysis because its normal-state electronic structure is known with exceptional precision, and because of experimental evidence that its superconductivity has, very unusually, a spontaneous angular momentum, i.e. a chiral state. This hypothesis of chirality is however difficult to reconcile with recent evidence on the spin part of the order parameter. Measurements under uniaxial stress offer an ideal way to test for chirality, because under uniaxial stress the superconducting and chiral transitions are predicted to split, allowing the empirical signatures of each to be identified separately. Here, we report zerofield muon spin relaxation (ZF-$\mu$SR) measurements on crystals placed under uniaxial stresses of up to 1.05 GPa. We report a clear stress-induced splitting between the onset temperatures of superconductivity and time-reversal symmetry breaking, consistent with qualitative expectations for chiral superconductivity. We also report the appearance of unexpected bulk magnetic order under a uniaxial stress of ~ 1.0 GPa in clean Sr$_2$RuO$_4$.
Comment: 28 pages, 12 figures