학술논문

El Gordo needs El Anzuelo: Probing the structure of cluster members with multi-band extended arcs in JWST data
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
Gravitational lensing by galaxy clusters involves hundreds of galaxies over a large redshift range and increases the likelihood of rare phenomena (supernovae, microlensing, dark substructures, etc.). Characterizing the mass and light distributions of foreground and background objects often requires a combination of high-resolution data and advanced modeling techniques. We present the detailed analysis of El Anzuelo, a prominent quintuply imaged dusty star forming galaxy ($z_{\rm s}=2.29$), mainly lensed by three members of the massive galaxy cluster ACT-CL$\,$J0102$-$4915, also known as El Gordo ($z_{\rm d}=0.87$). We leverage JWST/NIRCam data containing previously unseen lensing features using a Bayesian, multi-wavelength, differentiable and GPU-accelerated modeling framework that combines Herculens (lens modeling) and NIFTy (field model and inference) software packages. For one of the deflectors, we complement lensing constraints with stellar kinematics measured from VLT/MUSE data. In our lens model, we explicitly include the mass distribution of the cluster, locally corrected by a constant shear field. We find that the two main deflectors (L1 and L2) have logarithmic mass density slopes steeper than isothermal, with $\gamma_{\rm L1} = 2.23\pm0.05$ and $\gamma_{\rm L2} = 2.21\pm0.04$. We argue that such steep density profiles can arise due to tidally truncated mass distributions, which we probe thanks to the cluster lensing boost and the strong asymmetry of the lensing configuration. Moreover, our three-dimensional source model captures most of the surface brightness of the lensed galaxy, revealing a clump of at most $400$ parsecs at the source redshift, visible at wavelengths $\lambda_{\rm rest}\gtrsim0.6$ $\mu$m. Finally, we caution on using point-like features within extended arcs to constrain galaxy-scale lens models before securing them with extended arc modeling.
Comment: 26 pages