학술논문

Nanoscale Dodecahedral and Fullerene-Type Organoboroxine and Borazine Cages from Planar Building Units.
Document Type
Academic Journal
Author
Sánchez M; Centro de Investigación en Materiales Avanzados, S.C., Alianza Norte 202, Parque de Investigación en Innovación Tecnológica (PIIT), Carretera Monterrey-Aeropuerto Km 11, Apodaca 66628, Nuevo León, México.; Baltrusaitis J; Department of Chemical and Biomolecular Engineering, Lehigh University, Research Drive 111, Bethlehem, Pennsylvania 18015, United States.; Vasquez-Ríos MG; Département de Chimie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada.; Campillo-Alvarado G; Department of Chemistry, Reed College, Portland, Oregon 97202, United States.; MacGillivray LR; Département de Chimie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada.; Höpfl H; Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México.
Source
Publisher: American Chemical Society Country of Publication: United States NLM ID: 101088070 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1530-6992 (Electronic) Linking ISSN: 15306984 NLM ISO Abbreviation: Nano Lett Subsets: PubMed not MEDLINE; MEDLINE
Subject
Language
English
Abstract
Boroxine- and borazine-cage analogs to C 20 , C 60 , and C 70 were calculated and compared in terms of structure, strain indicators, and physical properties relevant to nanoscale applications. The results show C 60 and C 70 type cages are less strained than the smaller congener, primarily due to minimized bending in the B-arylene-B segments. The smallest cage calculated has a diameter of 2.4 nm, which increases up to 4.9 nm by either variation of the polyhedron (C 20 < C 60 < C 70 -type cage) or organic spacer elongation between boron centers. All calculated cages are porous (apertures ranging from 0.6 to 1.9 nm). Molecular electrostatic potential and Hirshfeld population analysis revealed both nucleophilic and electrophilic sites in the interior and exterior cage surfaces. HOMO-LUMO gaps range from 3.98 to 4.89 eV and 5.10-5.18 eV for the boroxine- and borazine-cages, respectively. Our findings provide insights into the design and properties of highly porous boroxine and borazine cages for nanoscience.