학술논문

A DNA Vaccine against Chikungunya Virus Is Protective in Mice and Induces Neutralizing Antibodies in Mice and Nonhuman Primates.
Document Type
Article
Source
PLoS Neglected Tropical Diseases. 1/11/2011, Vol. 5 Issue 1, p1-13. 13p.
Subject
*DNA vaccines
*HUMORAL immunity
*CHIKUNGUNYA virus
*PRIMATES
*CHIKUNGUNYA
*ARTIFICIAL chromosomes
Language
ISSN
1935-2727
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines. Author Summary: Chikungunya fever epidemics are sustained by a cycle of human-mosquito-human transmission, with the epidemic cycle being similar to those of dengue and urban yellow fever. While the threat of a pandemic continues to engage the public's attention, the peculiar problems associated with the more immediate and very real seasonal epidemics are also worthy of consideration. Specifically, there are limited viral strains that have been characterized and available for laboratory study as well as limited knowledge of immune responses induced to the virus. In this study, we isolated CHIKV virus from an acutely infected human patient and used this new virus to develop a neutralization assay and a challenge stock, which is effective in a mouse model. Furthermore, we analyzed the ability of an envelope-based synthetic DNA-based vaccine to impact viral disease in the mouse model and to generate protective levels of immune responses in nonhuman primates. We observed that this novel vaccine approach generated protective levels of immune responses in both mouse and non-human primate models. We believe that these studies advance the field of Chikungunya vaccine research as well as the study of immune protection to CHIKV. [ABSTRACT FROM AUTHOR]