학술논문

Self-assembling SAS-6 Multimer Is a Core Centriole Building Block.
Document Type
Article
Source
Journal of Biological Chemistry. 3/19/2010, Vol. 285 Issue 12, p8759-8770. 12p.
Subject
*CENTRIOLES
*ORGANELLES
*ELECTRON microscopy
*CENTROSOMES
*CELL membranes
*CHROMATOGRAPHIC analysis
*IMMUNOFLUORESCENCE
Language
ISSN
0021-9258
Abstract
Centrioles are conserved microtubule-based organelles with 9-fold symmetry that are essential for cilia and mitotic spindle formation. A conserved structure at the onset of centriole assembly is a "cartwheel" with 9-fold radial symmetry and a central tubule in its core. It remains unclear how the cartwheel is formed. The conserved centriole protein, SAS-6, is a cartwheel component that functions early in centriole formation. Here, combining biochemistry and electron microscopy, we characterize SAS-6 and show that it self-assembles into stable tetramers, which serve as building blocks for the central tubule. These results suggest that SAS-6 selfassembly may be an initial step in the formation of the cartwheel that provides the 9-fold symmetry. Electron microscopy of centrosomes identified 25-nm central tubules with repeating subunits and show that SAS-6 concentrates at the core of the cartwheel. Recombinant and native SAS-6 selfoligomerizes into tetramers with ∼6-nm subunits, and these tetramers are components of the centrosome, suggesting that tetramers are the building blocks of the central tubule. This is further supported by the observation that elevated levels of SAS-6 in Drosophila cells resulted in higher order structures resembling central tubule morphology. Finally, in the presence of embryonic extract, SAS-6 tetramers assembled into high density complexes, providing a starting point for the eventual in vitro reconstruction of centrioles. [ABSTRACT FROM AUTHOR]