소장자료
LDR | 04315cam a2200000 a | ||
001 | 0100367981▲ | ||
005 | 20190305095549▲ | ||
007 | ta ▲ | ||
008 | 180306s2018 nyua b 001 0 eng c▲ | ||
020 | ▼a9781493977093 (hbk.)▲ | ||
020 | ▼z9781493977109 (ebk.)▲ | ||
035 | ▼a(KERIS)REF000018664548▲ | ||
040 | ▼aRML▼beng▼cRML▼dRML▼dSCB▼dOCLCO▼dGW5XE▼dOCLCF▼dUAB▼dOCLCO▼dSTF▼dOCLCO▼dKUB▼d221016▲ | ||
050 | 4 | ▼aQH450.2▲ | |
082 | 0 | 4 | ▼a572.8/845▼223▲ |
090 | ▼a572.8845▼bT772w▲ | ||
245 | 0 | 0 | ▼aTranscriptome data analysis :▼bmethods and protocols /▼cedited by Yejun Wang, Ming-an Sun.▲ |
260 | ▼aNew York, NY :▼bHumana Press,▼c2018.▲ | ||
300 | ▼ax, 238 p. :▼bill. ;▼c27 cm.▲ | ||
490 | 0 | ▼aMethods in molecular biology,▼x1940-6029 ;▼vv. 1751▲ | |
504 | ▼aIncludes bibliographical references and index.▲ | ||
505 | 0 | 0 | ▼tComparison of gene expression profiles in nonmodel eukaryotic organisms with RNA-Seq /▼rHan Cheng, Yejun Wang, and Ming-an Sun --▼tMicroarray data analysis for transcriptome profiling /▼rMing-an Sun, Xiaojian Shao, and Yejun Wang --▼tPathway and network analysis of differentially expressed genes in transcriptomes /▼rQianli Huang, Ming-an Sun, and Ping Yan --▼tQuickRNASeq : guide for pipeline implementation and for interactive results visualization /▼rWen He, Shanrong Zhao, Chi Zhang, Michael S. Vincent, and Baohong Zhang --▼tTracking alternatively spliced isoforms from long reads by SpliceHunter /▼rZheng Kuang and Stefan Canzar --▼tRNA-seq-based transcript structure analysis with TrBorderExt /▼rYejun Wang, Ming-an Sun, and Aaron P. White --▼tAnalysis of RNA editing sites from RNA-seq data using GIREMI /▼rQing Zhang --▼tBioinformatic analysis of MicroRNA sequencing data /▼rXiaonan Fu and Daoyuan Dong --▼tMicroarray-based MicroRNA expression data analysis with bioconductor /▼rEmilio Mastriani, Rihong Zhai, and Songling Zhu --▼tIdentification and expression analysis of long intergenic noncoding RNAs /▼rMing-an Sun, Rihong Zhai, Qing Zhang, and Yejun Wang --▼tAnalysis of RNA-seq data using TEtranscripts /▼rYing Jin and Molly Hammell --▼tComputational analysis of RNA-protein interactions via deep sequencing /▼rLei Li, Konrad U. Forstner, and Yanjie Chao --▼tPredicting gene expression noise from gene expression variations /▼rXiaojian Shao and Ming-an Sun --▼tProtocol for epigenetic imprinting analysis with RNA-Seq data /▼rJinfeng Zou, Daoquan Xiang, Raju Datla, and Edwin Wang --▼tSingle-cell transcriptome analysis using SINCERA pipeline /▼rMinzhe Guo and Yan Xu --▼tMathematical modeling and deconvolution of molecular heterogeneity identifies novel subpopulations in complex tissues /▼rNiya Wang, Lulu Chen, and Yue Wang.▲ |
520 | ▼aThis detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study.▲ | ||
650 | 0 | ▼aGenetic transcription.▲ | |
700 | 1 | ▼aWang, Yejun.▲ | |
700 | 1 | ▼aSun, Ming-an.▲ |
Transcriptome data analysis :methods and protocols
자료유형
국외단행본
서명/책임사항
Transcriptome data analysis : methods and protocols / edited by Yejun Wang, Ming-an Sun.
발행사항
New York, NY : Humana Press , 2018.
형태사항
x, 238 p. : ill. ; 27 cm.
총서사항
Methods in molecular biology , 1940-6029 ; v. 1751
서지주기
Includes bibliographical references and index.
내용주기
Comparison of gene expression profiles in nonmodel eukaryotic organisms with RNA-Seq / Han Cheng, Yejun Wang, and Ming-an Sun -- Microarray data analysis for transcriptome profiling / Ming-an Sun, Xiaojian Shao, and Yejun Wang -- Pathway and network analysis of differentially expressed genes in transcriptomes / Qianli Huang, Ming-an Sun, and Ping Yan -- QuickRNASeq : guide for pipeline implementation and for interactive results visualization / Wen He, Shanrong Zhao, Chi Zhang, Michael S. Vincent, and Baohong Zhang -- Tracking alternatively spliced isoforms from long reads by SpliceHunter / Zheng Kuang and Stefan Canzar -- RNA-seq-based transcript structure analysis with TrBorderExt / Yejun Wang, Ming-an Sun, and Aaron P. White -- Analysis of RNA editing sites from RNA-seq data using GIREMI / Qing Zhang -- Bioinformatic analysis of MicroRNA sequencing data / Xiaonan Fu and Daoyuan Dong -- Microarray-based MicroRNA expression data analysis with bioconductor / Emilio Mastriani, Rihong Zhai, and Songling Zhu -- Identification and expression analysis of long intergenic noncoding RNAs / Ming-an Sun, Rihong Zhai, Qing Zhang, and Yejun Wang -- Analysis of RNA-seq data using TEtranscripts / Ying Jin and Molly Hammell -- Computational analysis of RNA-protein interactions via deep sequencing / Lei Li, Konrad U. Forstner, and Yanjie Chao -- Predicting gene expression noise from gene expression variations / Xiaojian Shao and Ming-an Sun -- Protocol for epigenetic imprinting analysis with RNA-Seq data / Jinfeng Zou, Daoquan Xiang, Raju Datla, and Edwin Wang -- Single-cell transcriptome analysis using SINCERA pipeline / Minzhe Guo and Yan Xu -- Mathematical modeling and deconvolution of molecular heterogeneity identifies novel subpopulations in complex tissues / Niya Wang, Lulu Chen, and Yue Wang.
요약주기
This detailed volume provides comprehensive practical guidance on transcriptome data analysis for a variety of scientific purposes. Beginning with general protocols, the collection moves on to explore protocols for gene characterization analysis with RNA-seq data as well as protocols on several new applications of transcriptome studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and useful, Transcriptome Data Analysis: Methods and Protocols serves as an ideal guide to the expanding purposes of this field of study.
ISBN
9781493977093 (hbk.)
청구기호
572.8845 T772w
소장정보
예도서예약
서서가에없는책 신고
보보존서고신청
캠캠퍼스대출
우우선정리신청
배자료배달신청
문문자발송
출청구기호출력
학소장학술지 원문서비스
등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 서비스 |
---|
북토크
자유롭게 책을 읽고
느낀점을 적어주세요
글쓰기
느낀점을 적어주세요
청구기호 브라우징
관련 인기대출 도서